Table 2 Confusion matrix analysis for all datasets (SVM classifier).

From: Addressing data imbalance in collision risk prediction with active generative oversampling

Dataset

Method

TP (Collision)

TN (Non-Collision)

FP (Non-Collision)

FN (Collision)

Sensitivity (Recall)

Specificity (Precision)

NASS GES Crash

Proposed

920

8500

150

80

0.92

0.98

GAN

850

8400

250

150

0.85

0.97

SMOTE

800

8300

350

200

0.8

0.96

ENN

750

8200

400

250

0.75

0.95

KSFDDD

Proposed

880

8200

200

100

0.9

0.98

GAN

800

8100

300

180

0.82

0.96

SMOTE

750

8000

400

250

0.75

0.95

ENN

700

7900

500

300

0.7

0.94

Swiss Road Traffic Accident

Proposed

780

7600

150

70

0.92

0.98

GAN

700

7500

250

150

0.82

0.97

SMOTE

650

7400

350

200

0.76

0.95

ENN

600

7300

400

250

0.71

0.94

UK Road Safety

Proposed

850

8300

200

100

0.89

0.98

GAN

780

8200

300

180

0.81

0.96

SMOTE

730

8100

400

250

0.75

0.95

ENN

680

8000

500

300

0.69

0.94