Table 2 Confusion matrix analysis for all datasets (SVM classifier).
From: Addressing data imbalance in collision risk prediction with active generative oversampling
Dataset | Method | TP (Collision) | TN (Non-Collision) | FP (Non-Collision) | FN (Collision) | Sensitivity (Recall) | Specificity (Precision) |
|---|---|---|---|---|---|---|---|
NASS GES Crash | Proposed | 920 | 8500 | 150 | 80 | 0.92 | 0.98 |
GAN | 850 | 8400 | 250 | 150 | 0.85 | 0.97 | |
SMOTE | 800 | 8300 | 350 | 200 | 0.8 | 0.96 | |
ENN | 750 | 8200 | 400 | 250 | 0.75 | 0.95 | |
KSFDDD | Proposed | 880 | 8200 | 200 | 100 | 0.9 | 0.98 |
GAN | 800 | 8100 | 300 | 180 | 0.82 | 0.96 | |
SMOTE | 750 | 8000 | 400 | 250 | 0.75 | 0.95 | |
ENN | 700 | 7900 | 500 | 300 | 0.7 | 0.94 | |
Swiss Road Traffic Accident | Proposed | 780 | 7600 | 150 | 70 | 0.92 | 0.98 |
GAN | 700 | 7500 | 250 | 150 | 0.82 | 0.97 | |
SMOTE | 650 | 7400 | 350 | 200 | 0.76 | 0.95 | |
ENN | 600 | 7300 | 400 | 250 | 0.71 | 0.94 | |
UK Road Safety | Proposed | 850 | 8300 | 200 | 100 | 0.89 | 0.98 |
GAN | 780 | 8200 | 300 | 180 | 0.81 | 0.96 | |
SMOTE | 730 | 8100 | 400 | 250 | 0.75 | 0.95 | |
ENN | 680 | 8000 | 500 | 300 | 0.69 | 0.94 |