Table 5 Performance analysis for dataset 2.
Metrics | CAN dataset | ||||
|---|---|---|---|---|---|
Proposed | AlexNet | DenseNet | SqueezeNet | GoogleNet | |
Sensitivity | 0.973 | 0.936 | 0.960 | 0.944 | 0.944 |
Specificity | 0.981 | 0.944 | 0.964 | 0.942 | 0.939 |
Accuracy | 0.984 | 0.956 | 0.970 | 0.948 | 0.946 |
Precision | 0.973 | 0.937 | 0.967 | 0.940 | 0.940 |
Recall | 0.973 | 0.952 | 0.962 | 0.927 | 0.922 |
F-measure | 0.972 | 0.905 | 0.964 | 0.933 | 0.930 |
NPV | 0.982 | 0.945 | 0.967 | 0.939 | 0.939 |
FPR | 0.018 | 0.035 | 0.035 | 0.032 | 0.032 |
FNR | 0.092 | 0.152 | 0.144 | 0.143 | 0.142 |
MCC | 0.972 | 0.931 | 0.962 | 0.929 | 0.929 |
Training Time (s) | 310 | 380 | 540 | 330 | 420 |
Testing Time (s) | 75 | 90 | 100 | 85 | 95 |
Inference Time (ms) | 12 | 18 | 22 | 15 | 20 |