Table 6 Performance analysis for dataset 3.

From: A secure and efficient deep learning-based intrusion detection framework for the internet of vehicles

Metrics

CICIoV2024 dataset

Proposed

AlexNet

DenseNet

SqueezeNet

GoogleNet

Sensitivity

0.962

0.95

0.971

0.93

0.957

Specificity

0.986

0.963

0.97

0.942

0.96

Accuracy

0.976

0.967

0.973

0.948

0.965

Precision

0.98

0.945

0.975

0.94

0.962

Recall

0.968

0.95

0.966

0.931

0.94

F-measure

0.974

0.948

0.97

0.937

0.949

NPV

0.988

0.96

0.975

0.946

0.963

FPR

0.015

0.025

0.03

0.028

0.031

FNR

0.038

0.06

0.075

0.061

0.065

MCC

0.973

0.941

0.968

0.933

0.946

Training Time (s)

500

600

720

550

650

Testing Time (s)

100

120

140

110

130

Inference Time (ms)

14

20

25

18

22