Table 8 Performance analysis of the proposed model over SOTA methods of dataset 2.
Metrics | CAN dataset | ||||
|---|---|---|---|---|---|
Proposed | DFSENet [15] | GAN [18] | TCAN-IDS [22] | XAIEM [23] | |
Sensitivity | 0.973 | 0.945 | 0.96 | 0.948 | 0.933 |
Specificity | 0.981 | 0.975 | 0.967 | 0.96 | 0.95 |
Accuracy | 0.984 | 0.974 | 0.967 | 0.958 | 0.95 |
Precision | 0.973 | 0.94 | 0.96 | 0.955 | 0.965 |
Recall | 0.973 | 0.952 | 0.963 | 0.952 | 0.94 |
F-measure | 0.972 | 0.96 | 0.95 | 0.948 | 0.935 |
NPV | 0.982 | 0.96 | 0.963 | 0.957 | 0.95 |
FPR | 0.018 | 0.025 | 0.035 | 0.031 | 0.04 |
FNR | 0.092 | 0.085 | 0.07 | 0.08 | 0.095 |
MCC | 0.972 | 0.96 | 0.965 | 0.95 | 0.94 |
Training Time (s) | 550 | 600 | 650 | 620 | 640 |
Testing Time (s) | 110 | 120 | 130 | 115 | 125 |
Inference Time (ms) | 15 | 18 | 20 | 17 | 19 |