Table 9 Performance analysis of the proposed model over SOTA methods of dataset 3.
Metrics | CICIoV2024 dataset | ||||
|---|---|---|---|---|---|
Proposed | DFSENet [15] | GAN [18] | TCAN-IDS [22] | XAIEM [23] | |
Sensitivity | 0.962 | 0.941 | 0.957 | 0.944 | 0.93 |
Specificity | 0.986 | 0.977 | 0.965 | 0.968 | 0.95 |
Accuracy | 0.976 | 0.963 | 0.955 | 0.946 | 0.94 |
Precision | 0.98 | 0.97 | 0.95 | 0.965 | 0.96 |
Recall | 0.968 | 0.955 | 0.966 | 0.953 | 0.945 |
F-measure | 0.974 | 0.962 | 0.962 | 0.948 | 0.94 |
NPV | 0.988 | 0.97 | 0.963 | 0.965 | 0.95 |
FPR | 0.015 | 0.02 | 0.025 | 0.03 | 0.031 |
FNR | 0.038 | 0.04 | 0.045 | 0.05 | 0.06 |
MCC | 0.973 | 0.96 | 0.968 | 0.965 | 0.95 |
Training Time (s) | 500 | 550 | 600 | 590 | 610 |
Testing Time (s) | 100 | 110 | 120 | 115 | 125 |
Inference Time (ms) | 12 | 15 | 18 | 16 | 17 |