Table 4 A comparative analysis of 6 machine learning algorithms, implemented in a fusion model, to predict Ki-67 expression based on the internal test dateset.
Model | Acc | AUC | 95% CI | Sens | Spec | F1 |
|---|---|---|---|---|---|---|
LR | 0.745 | 0.785 | 0.723ā0.847 | 0.778 | 0.679 | 0.801 |
SVM | 0.778 | 0.811 | 0.752ā0.870 | 0.823 | 0.691 | 0.831 |
KNN | 0.573 | 0.645 | 0.570ā0.720 | 0.532 | 0.654 | 0.622 |
RandomForest | 0.665 | 0.677 | 0.604ā0.750 | 0.759 | 0.481 | 0.750 |
LightGBM | 0.749 | 0.767 | 0.700ā0.834 | 0.791 | 0.667 | 0.806 |
AdaBoost | 0.732 | 0.750 | 0.679ā0.822 | 0.797 | 0.605 | 0.797 |