Table 4 Yolov8 with attention results comparison.

From: Optimized YOLOv8 framework for intelligent rockfall detection on mountain roads

Model

AP@0.5

AP@0.75

parameters

GFLOPs

Yolov8

0.878

0.507

3,005,843

8.1

Yolov8 + setnet

0.882

0.503

3,014,035

8.1

Yolov8 + cbam

0.877

0.496

3,071,733

8.1

Yolov8 + cpca

0.881

0.508

3,132,883

8.2