Table 12 Performance analysis of existing and proposed models on MIAS dataset using different optimizers after data-preprocessing (before data preprocessing).

From: Hybrid convolutional neural network and bi-LSTM model with EfficientNet-B0 for high-accuracy breast cancer detection and classification

CNN classifier

Optimizer

Accuracy (%)

Sensitivity (%)

Specificity (%)

Precision (%)

AUC (%)

F1-score (%)

Cohen’s Kappa (κ)

VGG-16

Adam

70.50

61.00

82.50

68.00

78

64.35

0.51

RMSProp

69.00

60.50

81.50

67.00

76

63.50

0.50

SGD

68.00

59.00

80.00

65.50

75

62.00

0.48

VGG-19

Adam

75.50

66.50

85.00

71.50

80

71.00

0.54

RMSProp

73.00

64.00

83.00

69.00

78

68.50

0.52

SGD

71.50

63.00

82.50

68.00

76

66.50

0.50

DenseNet169

Adam

74.00

64.50

84.00

70.50

79

68.80

0.53

RMSProp

72.50

63.00

83.50

69.00

78

67.50

0.51

SGD

71.00

62.00

81.00

68.00

77

65.50

0.49

ResNet-50

Adam

76.50

67.50

86.50

72.50

81

70.70

0.55

RMSProp

74.50

65.50

85.00

71.00

79

69.50

0.53

SGD

73.00

64.00

83.50

70.00

78

68.00

0.51

DenseNet201

Adam

78.00

69.00

88.00

73.50

82

71.50

0.56

RMSProp

76.50

68.00

87.50

72.00

81

70.60

0.54

SGD

75.00

67.50

86.00

71.50

79

69.00

0.52

Proposed hybrid model

Adam

92.00

85.00

93.50

90.00

95

88.50

0.75

RMSProp

90.50

83.50

92.00

89.00

94

87.50

0.73

SGD

88.00

80.00

91.00

86.00

92

84.50

0.70