Table 14 Performance analysis of existing and proposed models on MIAS dataset using different optimizers (before data preprocessing).

From: Hybrid convolutional neural network and bi-LSTM model with EfficientNet-B0 for high-accuracy breast cancer detection and classification

CNN Classifier

Optimizer

Accuracy (%)

Sensitivity (%)

Specificity (%)

Precision (%)

AUC (%)

F1-score (%)

Cohen’s Kappa (κ)

VGG-16

Adam

75.00

65.50

85.00

70.50

77

67.00

0.50

RMSProp

73.50

64.00

83.50

69.00

76

65.00

0.48

SGD

72.00

63.00

82.00

68.00

75

64.00

0.46

VGG-19

Adam

78.00

69.00

87.00

73.00

80

70.50

0.53

RMSProp

76.50

67.00

85.50

71.50

78

69.00

0.51

SGD

75.00

66.00

84.50

70.50

77

68.00

0.50

DenseNet169

Adam

76.50

67.50

86.50

72.00

79

70.00

0.54

RMSProp

75.00

66.00

85.00

71.00

78

69.00

0.52

SGD

73.50

64.50

83.50

70.00

77

68.00

0.50

ResNet-50

Adam

79.00

70.00

88.00

74.00

81

71.00

0.55

RMSProp

77.50

68.50

87.50

73.50

79

70.50

0.53

SGD

76.00

67.00

86.50

72.00

78

69.00

0.51

DenseNet201

Adam

80.00

72.00

89.00

76.00

83

74.00

0.57

RMSProp

78.00

70.00

88.00

74.50

81

72.00

0.55

SGD

77.00

69.00

87.50

73.00

79

71.00

0.53

Proposed hybrid model

Adam

91.00

83.00

92.50

88.00

94

86.50

0.72

RMSProp

89.00

80.50

91.00

87.50

93

85.00

0.70

SGD

87.00

78.50

89.00

85.00

92

83.00

0.68