Table 18 Comparative analysis with existing state-of-the-art research and proposed model.

From: Hybrid convolutional neural network and bi-LSTM model with EfficientNet-B0 for high-accuracy breast cancer detection and classification

References

Model

Accuracy (%)

Sensitivity (%)

Specificity (%)

Precision (%)

AUC (%)

F1 Score (%)

Cohen’s Kappa (κ)

Ellis et al.1

Deep Learning Risk Prediction

88.5

90.0

87.0

89.0

0.91

89.5

0.80

Mahmood et al.2

Radiomics + Deep Learning

91.2

92.5

90.0

90.8

0.93

91.1

0.82

Laghmati et al.4

ML + PCA

85.0

84.0

86.0

85.5

0.87

84.8

0.72

Rahman et al.5

Deep Learning

87.0

85.0

88.5

86.0

0.90

85.5

0.75

Ahmad, Jawad, et al.7

Deep Learning

92.0

94.0

90.0

91.0

0.95

92.0

0.85

Gullo et al.9

AI-enhanced MRI

89.5

88.0

91.0

90.0

0.92

89.0

0.78

Liu et al.11

Multi-modal Fusion Network

90.5

91.0

89.0

90.0

0.94

90.5

0.80

Ray et al.12

Advanced ML Models

93.0

92.0

94.0

93.5

0.96

92.7

0.87

Xiao et al.17

CNN

88.0

86.5

89.5

87.0

0.89

86.8

0.74

Naz et al.18

Deep Learning + IoMT

85.5

84.0

87.0

86.0

0.88

85.0

0.70

Wang et al.14

Deep Sample Clustering

91.5

92.0

91.0

90.5

0.94

91.2

0.83

Yan et al.20

CNN with Attention Modules

92.5

93.0

92.0

91.5

0.95

92.3

0.86

Abimouloud et al.21

Vision Transformer + CNN

90.0

89.0

91.5

90.0

0.92

89.5

0.79

Ignatov et al.8

Morphology Aware DNN

91.0

92.0

90.0

91.0

0.93

91.0

0.84

Proposed hybrid model

CNN-Bi-LSTM

99.00

95.00

99.50

98.00

0.99

96.33

0.95