Table 3 Applied parameters for training the proposed models.

From: Speech emotion recognition with light weight deep neural ensemble model using hand crafted features

Parameter

Value

Batch size

64

Epochs

100

Objective function

Cross-Entropy (Categorical)

Final layer activation

Softmax function

Adam optimizer

0.001

LR adjustment

monitor=’validation_accuracy’, patience=3, reduction_factor=0.5, minimum_LR=0.00001

Early stopping

monitor=’val_accuracy’, patience=5

Kernel size

”5x1” for first 3 Convolutional Layers ”3x1” for the rest

Pool size

”2x2” for first 4 MaxPooling Layers ”2x1” for the last

Activation

Relu (Rectified Linear Unit)

Padding

Same

Dropout rate

20%