Table 4 Performance metrics for different methods and datasets.

From: Speech emotion recognition with light weight deep neural ensemble model using hand crafted features

Method

Dataset

Accuracy

Weighted F1

AUC-ROC

AUC-PRC

1D CNN

EmoDB

98.60

98.06

100.00

100.00

CNN_Bi-LSTM

EmoDB

94.39

93.74

99.87

99.39

Ensemble

EmoDB

98.13

98.12

100.00

99.95

1D CNN

RAVDESS

96.18

96.22

99.91

99.50

CNN_Bi-LSTM

RAVDESS

97.57

97.29

99.92

99.57

Ensemble

RAVDESS

97.57

97.56

99.95

99.68

1D CNN

TESS

100.00

100.00

100.00

100.00

CNN_Bi-LSTM

TESS

99.82

100.00

100.00

100.00

Ensemble

TESS

100.00

100.00

100.00

100.00

1D CNN

SAVEE

96.88

97.63

99.98

99.87

CNN_Bi-LSTM

SAVEE

89.58

87.42

99.28

96.31

Ensemble

SAVEE

98.44

98.45

99.98

99.88

1D CNN

CREMA-D

96.07

96.24

99.77

99.29

CNN_Bi-LSTM

CREMA-D

97.31

97.34

99.81

99.50

Ensemble

CREMA-D

98.66

98.65

99.88

99.72