Table 4 Sector wise three phase average phase voltage vectors.

From: Fuzzy-2 deployment in indirect vector control and hybrid space vector modulation for a two-level inverter fed induction motor drive

Sector 1

\(\left[ {\begin{array}{*{20}c} {V_{an(av.)} } \\ {V_{bn(av.)} } \\ {V_{cn(av.)} } \\ \end{array} } \right] = \frac{{V_{dc} }}{3}\mathop {\left[ {\begin{array}{*{20}c} {2d_{t1} + 2d_{t2} } \\ { - d_{t1} + d_{t2} } \\ { - d_{t1} - 2d_{t2} } \\ \end{array} } \right]}\limits^{{}}\)

Sector 2

\(\left[ {\begin{array}{*{20}c} {V_{an(av.)} } \\ {V_{bn(av.)} } \\ {V_{cn(av.)} } \\ \end{array} } \right] = \frac{{V_{dc} }}{3}\mathop {\left[ {\begin{array}{*{20}c} { - d_{t1} + d_{t2} } \\ {2d_{t1} + d_{t2} } \\ { - d_{t1} - 2d_{t2} } \\ \end{array} } \right]}\limits^{{}}\)

Sector 3

\(\left[ {\begin{array}{*{20}c} {V_{an(av.)} } \\ {V_{bn(av.)} } \\ {V_{cn(av.)} } \\ \end{array} } \right] = \frac{{V_{dc} }}{3}\mathop {\left[ {\begin{array}{*{20}c} { - d_{t1} + d_{t2} } \\ {2d_{t1} + d_{t2} } \\ { - d_{t1} + 2d_{t2} } \\ \end{array} } \right]}\limits^{{}}\)

Sector 4

\(\left[ {\begin{array}{*{20}c} {V_{an(av.)} } \\ {V_{bn(av.)} } \\ {V_{cn(av.)} } \\ \end{array} } \right] = \frac{{V_{dc} }}{3}\mathop {\left[ {\begin{array}{*{20}c} { - d_{t1} + 2d_{t2} } \\ { - d_{t1} + d_{t2} } \\ {2d_{t1} + d_{t2} } \\ \end{array} } \right]}\limits^{{}}\)

Sector 5

\(\left[ {\begin{array}{*{20}c} {V_{an(av.)} } \\ {V_{bn(av.)} } \\ {V_{cn(av.)} } \\ \end{array} } \right] = \frac{{V_{dc} }}{3}\mathop {\left[ {\begin{array}{*{20}c} { - d_{t1} + d_{t2} } \\ { - d_{t1} - 2d_{t2} } \\ {2d_{t1} + d_{t2} } \\ \end{array} } \right]}\limits^{{}}\)

Sector 6

\(\left[ {\begin{array}{*{20}c} {V_{an(av.)} } \\ {V_{bn(av.)} } \\ {V_{cn(av.)} } \\ \end{array} } \right] = \frac{{V_{dc} }}{3}\mathop {\left[ {\begin{array}{*{20}c} {2d_{t1} + d_{t2} } \\ { - d_{t1} - 2d_{t2} } \\ { - d_{t1} + d_{t2} } \\ \end{array} } \right]}\limits^{{}}\)