Table 1 Comparison of Methodologies and Results from Various Studies.
Source | Methodology | Dataset | Accuracy | Precision | Recall | F1 Score | AUC-ROC |
|---|---|---|---|---|---|---|---|
S16 | Optimised SMOTE+ (ML) classifiers. | SDP dataset | 0.99 | 0.68 (NN) | 1.00 (NN) | 0.91 (NN) | 0.98 (NN) |
S27 | SVM-RBF | Czech Technical University Dataset | 0.77 ± 0.05 | 0.69 ± 0.08 | 0.64 ± 0.09 | 0.90 ± 0.09 | |
S38 | DeepFM | HarvardX Person-Course Academic Year 2013 De-Identified Dataset. | 99% | 0.98 | 0.99 | 0.98 | 0.92 |
S49 | SMOTE + RF, SVMSMOTE + RF | Data collected from internal and external sources | 0.741 ± 0.005 | 0.84 ± 0.02 | |||
S510 | Multi-feature fusion algorithm | KDD CUP 2015 Dataset | 0.8885 | 0.899 | 0.9627 | 0.9311 | |
S611 | LR, DT, RF, SVM, DNN, LightGBM | 2013-2022 with 20,050 student records. | 0.955 (LightGBM) | 0.867 (LightGBM) | 0.814 (LightGBM) | 0.840 (LightGBM) | |
S712 | LR, DT, RF, LightGBM, SVM, XGBoost | School Dataset | 0.94 | 0.9523 | 0.9393 | 0.9703 | 0.895 |
S813 | AutoML. Grid search and randomized search | Twaweza Uwezo Dataset (168,162 samples, 15 features) | 0.99 (RF, grid search) | 0.84 | 0.85 | 0.82 | |
S914 | CNN, LSTM, ensemble approaches | KDD CUP 2015 dataset | 0.91896 (Bagging LSTM-LSTM) | 0.919 (Bagging LSTM-LSTM) | 0.9899 (Bagging LSTM-LSTM) | 0.98 (Bagging LSTM-LSTM) |