Table 1 Comparison of Methodologies and Results from Various Studies.

From: A PSO weighted ensemble framework with SMOTE balancing for student dropout prediction in smart education systems

Source

Methodology

Dataset

Accuracy

Precision

Recall

F1 Score

AUC-ROC

S16

Optimised SMOTE+ (ML) classifiers.

SDP dataset

0.99

0.68 (NN)

1.00 (NN)

0.91 (NN)

0.98 (NN)

S27

SVM-RBF

Czech Technical University Dataset

0.77 ± 0.05

0.69 ± 0.08

0.64 ± 0.09

0.90 ± 0.09

 

S38

DeepFM

HarvardX Person-Course Academic Year 2013 De-Identified Dataset.

99%

0.98

0.99

0.98

0.92

S49

SMOTE + RF, SVMSMOTE + RF

Data collected from internal and external sources

0.741 ± 0.005

  

0.84 ± 0.02

 

S510

Multi-feature fusion algorithm

KDD CUP 2015 Dataset

0.8885

0.899

0.9627

0.9311

 

S611

LR, DT, RF, SVM, DNN, LightGBM

2013-2022 with 20,050 student records.

0.955 (LightGBM)

0.867 (LightGBM)

0.814 (LightGBM)

0.840 (LightGBM)

 

S712

LR, DT, RF, LightGBM, SVM, XGBoost

School Dataset

0.94

0.9523

0.9393

0.9703

0.895

S813

AutoML. Grid search and randomized search

Twaweza Uwezo Dataset (168,162 samples, 15 features)

0.99 (RF, grid search)

0.84

0.85

 

0.82

S914

CNN, LSTM, ensemble approaches

KDD CUP 2015 dataset

0.91896 (Bagging LSTM-LSTM)

0.919 (Bagging LSTM-LSTM)

0.9899 (Bagging LSTM-LSTM)

0.98 (Bagging LSTM-LSTM)