Table 8 Parameter setting of various models.

From: The development of CC-TF-BiGRU model for enhancing accuracy in photovoltaic power forecasting

Model

Label

Parameter setting

CC-Transformer

#1

Sequence_length = 10, batch_size = 64, feature_size = 250, num_layers = 1, nhead = 10, num_epochs = 100

CC-CNN-Transformer

#2

CNN channels=[Input: 13, Conv1: 32, Conv2: 64], Pooling kernel size = 2, sequence_length = 10, batch_size = 64, feature_size = 250, num_layers = 1, nhead = 10,

CC-BiGRU

#3

For hidden layer 2, number of nodes = 20; For hidden layer 1, number of nodes = 10

CC-CNN-BiGRU

#4

CNN channels=[Input: 13, Conv1: 64, Conv2: 128], Pooling kernel size = 2, For hidden layer 2, number of nodes = 20; For hidden layer 1, number of nodes = 10

CC-TF-BiGRU

#5

n_estimators = 10; learning_rate = 0.001; For hidden layer 2, number of nodes = 20; For hidden layer 1, number of nodes = 10