Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Disruption of intracellular iron homeostasis through mitochondrial dysfunction associated with suppression of ATP 13A2 expression
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 January 2026

Disruption of intracellular iron homeostasis through mitochondrial dysfunction associated with suppression of ATP 13A2 expression

  • Takanori Murakami1,
  • Kazuki Ohuchi1,
  • Masanori Kiuchi1,
  • Hisaka Kurita1,
  • Kanta Kawai2,
  • Ryo Kakiuchi2,
  • Tasuku Hirayama2,
  • Hideko Nagasawa2,
  • Zhiliang Wu3,
  • Yoichi Maekawa3,4,5,
  • Isao Hozumi1 &
  • …
  • Masatoshi Inden1 

Scientific Reports , Article number:  (2026) Cite this article

  • 851 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Neurodegeneration
  • Parkinson's disease

Abstract

Elevated iron in the SNpc may play a key role in Parkinson’s disease (PD) neurodegeneration, yet the underlying mechanism accounting for this iron accumulation is unclear. Although iron is an essential element, excessive amounts produce toxicity. Here, we focused on the role of iron and ATP13A2, the causative gene of PARK9 neurodegeneration with brain iron accumulation, using a cellular model. ATP13A2 deficiency resulted in impaired lysosomal function and iron accumulation in cell organelles. Further, we found dysfunction of mitophagy, which is involved in managing mitochondrial quality, as well as mitochondrial damage. Furthermore, we confirmed a decreased heme synthesis capacity, which is important to maintain intracellular iron homeostasis. Overall, our study indicates that lysosome-derived mitochondrial impairment can disrupt intracellular iron homeostasis in a cell model of PD pathology. This could help better understand the mechanisms underlying PD.

Similar content being viewed by others

Mitochondrial iron deficiency triggers cytosolic iron overload in PKAN hiPS-derived astrocytes

Article Open access 25 May 2024

Nigral ATP13A2 depletion induces Parkinson’s disease-related neurodegeneration in a pilot study in non-human primates

Article Open access 01 August 2024

Neuroprotective effects of ATPase inhibitory factor 1 preventing mitochondrial dysfunction in Parkinson's disease

Article Open access 09 March 2022

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

PD:

Parkinson’s disease

α-Syn:

α-synuclein

ATP13A2:

ATPase cation transporting 13A2

NBIA:

neurodegeneration with brain iron accumulation

IRP2:

Iron regulatory protein 2

SDS:

sodium dodecyl sulfate

PBS:

phosphate-buffered saline

KD:

knockdown

α-Syn-SH cells:

human wild-type α-Syn in SH-SY5Y cells

DFO:

deferoxamine mesylate

TfR:

transferrin receptor

DMT1:

divalent metal transporter 1

FPN:

ferroportin

apo-Tf apo:

Transferrin

GBD:

glibenclamide

5-ALA:

5-aminolevulinic acid

FAC:

ferric ammonium citrate

naïve-SH:

cells naïve SH-SY5Y cells

siATP:

siRNA targeting ATP13A2

NC:

siRNA of negative control

References

  1. Braak, H. et al. Staging of brain pathology related to sporadic parkinson’s disease. Neurobiol. Aging. 24, 197–211. https://doi.org/10.1016/s0197-4580(02)00065-9 (2003).

    Google Scholar 

  2. Charvin, D., Medori, R., Hauser, R. A. & Rascol, O. Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nat. Rev. Drug Discov. 17, 804–822. https://doi.org/10.1038/nrd.2018.136 (2018).

    Google Scholar 

  3. Ding, X. S. et al. Ferroptosis in parkinson’s disease: molecular mechanisms and therapeutic potential. Ageing Res. Rev. 91, 102077. https://doi.org/10.1016/j.arr.2023.102077 (2023).

    Google Scholar 

  4. Wise, R. M. et al. Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in parkinson’s disease and neurodegeneration with brain iron accumulation disorders. Neurobiol. Dis. 175, 105920. https://doi.org/10.1016/j.nbd.2022.105920 (2022).

    Google Scholar 

  5. Zeng, X. S., Geng, W. S., Jia, J. J., Chen, L. & Zhang, P. P. Cellular and molecular basis of neurodegeneration in Parkinson disease. Front. Aging Neurosci. 10, 109. https://doi.org/10.3389/fnagi.2018.00109 (2018).

    Google Scholar 

  6. Perinan, M. T. et al. Effect modification between genes and environment and parkinson’s disease risk. Ann. Neurol. 92, 715–724. https://doi.org/10.1002/ana.26467 (2022).

    Google Scholar 

  7. Bandres-Ciga, S., Diez-Fairen, M., Kim, J. J. & Singleton, A. B. Genetics of parkinson’s disease: an introspection of its journey towards precision medicine. Neurobiol. Dis. 137, 104782. https://doi.org/10.1016/j.nbd.2020.104782 (2020).

    Google Scholar 

  8. Gialluisi, A. et al. Identification of sixteen novel candidate genes for late onset Parkinson’s disease. Mol. Neurodegener. 16 https://doi.org/10.1186/s13024-021-00455-2 (2021).

  9. Matsui, H. et al. Cytosolic DsDNA of mitochondrial origin induces cytotoxicity and neurodegeneration in cellular and zebrafish models of parkinson’s disease. Nat. Commun. 12, 3101. https://doi.org/10.1038/s41467-021-23452-x (2021).

    Google Scholar 

  10. Meng, Y. et al. Putaminal Recombinant glucocerebrosidase delivery with magnetic Resonance-Guided focused ultrasound in parkinson’s disease: A phase I study. Mov. Disord. 37, 2134–2139. https://doi.org/10.1002/mds.29190 (2022).

    Google Scholar 

  11. Henrich, M. T., Oertel, W. H., Surmeier, D. J. & Geibl, F. F. Mitochondrial dysfunction in parkinson’s disease - a key disease hallmark with therapeutic potential. Mol. Neurodegener. 18, 83. https://doi.org/10.1186/s13024-023-00676-7 (2023).

    Google Scholar 

  12. Clark, E. H., de la Torre, V., Hoshikawa, A., Briston, T. & T. & Targeting mitophagy in parkinson’s disease. J. Biol. Chem. 296, 100209. https://doi.org/10.1074/jbc.REV120.014294 (2021).

    Google Scholar 

  13. Lin, M. K. & Farrer, M. J. Genetics and genomics of parkinson’s disease. Genome Med. 6, 48. https://doi.org/10.1186/gm566 (2014).

    Google Scholar 

  14. Li, H. et al. Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations. Autophagy 15, 113–130. https://doi.org/10.1080/15548627.2018.1509818 (2019).

    Google Scholar 

  15. Bloem, B. R., Okun, M. S. & Klein, C. Parkinson’s disease. Lancet 397, 2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X (2021).

    Google Scholar 

  16. Tian, Y. et al. Iron metabolism in aging and Age-Related diseases. Int. J. Mol. Sci. 23 https://doi.org/10.3390/ijms23073612 (2022).

  17. Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38, 1184–1191. https://doi.org/10.1038/ng1884 (2006).

    Google Scholar 

  18. Schneider, S. A. et al. ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov. Disord. 25, 979–984. https://doi.org/10.1002/mds.22947 (2010).

    Google Scholar 

  19. Dehay, B. et al. Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proc. Natl. Acad. Sci. U S A. 109, 9611–9616. https://doi.org/10.1073/pnas.1112368109 (2012).

    Google Scholar 

  20. van Veen, S. et al. ATP13A2 deficiency disrupts lysosomal polyamine export. Nature 578, 419–424. https://doi.org/10.1038/s41586-020-1968-7 (2020).

    Google Scholar 

  21. Fujii, T. et al. Parkinson’s disease-associated ATP13A2/PARK9 functions as a lysosomal H(+),K(+)-ATPase. Nat. Commun. 14, 2174. https://doi.org/10.1038/s41467-023-37815-z (2023).

    Google Scholar 

  22. Rinaldi, D. E., Corradi, G. R., Cuesta, L. M. & Adamo, H. P. Tezanos Pinto, F. The Parkinson-associated human P5B-ATPase ATP13A2 protects against the iron-induced cytotoxicity. Biochim. Biophys. Acta. 1848, 1646–1655. https://doi.org/10.1016/j.bbamem.2015.04.008 (2015). de.

    Google Scholar 

  23. Ryan, B. J., Hoek, S., Fon, E. A. & Wade-Martins, R. Mitochondrial dysfunction and mitophagy in parkinson’s: from Familial to sporadic disease. Trends Biochem. Sci. 40, 200–210. https://doi.org/10.1016/j.tibs.2015.02.003 (2015).

    Google Scholar 

  24. Hsieh, C. H. et al. Functional impairment in Miro degradation and mitophagy is a shared feature in Familial and sporadic parkinson’s disease. Cell. Stem Cell. 19, 709–724. https://doi.org/10.1016/j.stem.2016.08.002 (2016).

    Google Scholar 

  25. Costas, M., Mehn, M. P., Jensen, M. P. & Que, L. Jr. Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem. Rev. 104, 939–986. https://doi.org/10.1021/cr020628n (2004).

    Google Scholar 

  26. Enami, S., Sakamoto, Y. & Colussi, A. J. Fenton chemistry at aqueous interfaces. Proc. Natl. Acad. Sci. U S A. 111, 623–628. https://doi.org/10.1073/pnas.1314885111 (2014).

    Google Scholar 

  27. Lee, J. & Hyun, D. H. The interplay between intracellular iron homeostasis and neuroinflammation in neurodegenerative diseases. Antioxid. (Basel). 12 https://doi.org/10.3390/antiox12040918 (2023).

  28. Zecca, L., Youdim, M. B., Riederer, P., Connor, J. R. & Crichton, R. R. Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. 5, 863–873. https://doi.org/10.1038/nrn1537 (2004).

    Google Scholar 

  29. Ishikawa, H. et al. Involvement of Heme regulatory motif in Heme-mediated ubiquitination and degradation of IRP2. Mol. Cell. 19, 171–181. https://doi.org/10.1016/j.molcel.2005.05.027 (2005).

    Google Scholar 

  30. Hirayama, T., Niwa, M., Hirosawa, S. & Nagasawa, H. High-Throughput screening for the discovery of iron homeostasis modulators using an extremely sensitive fluorescent probe. ACS Sens. 5, 2950–2958. https://doi.org/10.1021/acssensors.0c01445 (2020).

    Google Scholar 

  31. Hirayama, T., Kadota, S., Niwa, M. & Nagasawa, H. A mitochondria-targeted fluorescent probe for selective detection of mitochondrial labile Fe(ii). Metallomics 10, 794–801. https://doi.org/10.1039/c8mt00049b (2018).

    Google Scholar 

  32. Niwa, M., Hirayama, T., Okuda, K. & Nagasawa, H. A new class of high-contrast Fe(II) selective fluorescent probes based on spirocyclized scaffolds for visualization of intracellular labile iron delivered by transferrin. Org. Biomol. Chem. 12, 6590–6597. https://doi.org/10.1039/c4ob00935e (2014).

    Google Scholar 

  33. Hirayama, T. et al. A Golgi-targeting fluorescent probe for labile Fe(ii) to reveal an abnormal cellular iron distribution induced by dysfunction of VPS35. Chem. Sci. 10, 1514–1521. https://doi.org/10.1039/c8sc04386h (2019).

    Google Scholar 

  34. Kawai, K. et al. Molecular imaging of labile Heme in living cells using a small molecule fluorescent probe. J. Am. Chem. Soc. 144, 3793–3803. https://doi.org/10.1021/jacs.1c08485 (2022).

    Google Scholar 

  35. Xie, Y. X. et al. Lysosomal exocytosis releases pathogenic alpha-synuclein species from neurons in synucleinopathy models. Nat. Commun. 13, 4918. https://doi.org/10.1038/s41467-022-32625-1 (2022).

    Google Scholar 

  36. Rivero-Rios, P., Madero-Perez, J., Fernandez, B. & Hilfiker, S. Targeting the Autophagy/Lysosomal degradation pathway in parkinson’s disease. Curr. Neuropharmacol. 14, 238–249. https://doi.org/10.2174/1570159x13666151030103027 (2016).

    Google Scholar 

  37. Krishna, A. et al. Systems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for parkinson’s disease. BMC Genom. 15, 1154. https://doi.org/10.1186/1471-2164-15-1154 (2014).

    Google Scholar 

  38. Usenovic, M., Tresse, E., Mazzulli, J. R., Taylor, J. P. & Krainc, D. Deficiency of ATP13A2 leads to lysosomal dysfunction, alpha-synuclein accumulation, and neurotoxicity. J. Neurosci. 32, 4240–4246. https://doi.org/10.1523/JNEUROSCI.5575-11.2012 (2012).

    Google Scholar 

  39. Erb, M. L., Sipple, K., Levine, N., Chen, X. & Moore, D. J. Adult-onset deletion of ATP13A2 in mice induces progressive nigrostriatal pathway dopaminergic degeneration and lysosomal abnormalities. NPJ Parkinsons Dis. 10, 133. https://doi.org/10.1038/s41531-024-00748-5 (2024).

    Google Scholar 

  40. Wang, R. et al. ATP13A2 facilitates HDAC6 recruitment to lysosome to promote autophagosome-lysosome fusion. J. Cell. Biol. 218, 267–284. https://doi.org/10.1083/jcb.201804165 (2019).

    Google Scholar 

  41. Kolnagou, A., Kontoghiorghe, C. N. & Kontoghiorghes, G. J. New targeted therapies and diagnostic methods for iron overload diseases. Front. Biosci. (Schol Ed). 10, 1–20. https://doi.org/10.2741/s498 (2018).

    Google Scholar 

  42. Terzi, E. M., Sviderskiy, V. O., Alvarez, S. W., Whiten, G. C. & Possemato, R. Iron-sulfur cluster deficiency can be sensed by IRP2 and regulates iron homeostasis and sensitivity to ferroptosis independent of IRP1 and FBXL5. Sci. Adv. 7 https://doi.org/10.1126/sciadv.abg4302 (2021).

  43. Muckenthaler, M. U., Galy, B. & Hentze, M. W. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu. Rev. Nutr. 28, 197–213. https://doi.org/10.1146/annurev.nutr.28.061807.155521 (2008).

    Google Scholar 

  44. Klausner, R. D., Ashwell, G., van Renswoude, J., Harford, J. B. & Bridges, K. R. Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proc. Natl. Acad. Sci. U S A. 80, 2263–2266. https://doi.org/10.1073/pnas.80.8.2263 (1983).

    Google Scholar 

  45. Du, X. et al. Activation of ATP-sensitive potassium channels enhances DMT1-mediated iron uptake in SK-N-SH cells in vitro. Sci. Rep. 6, 33674. https://doi.org/10.1038/srep33674 (2016).

    Google Scholar 

  46. Zhang, Q. et al. Deletion of Kir6.2/SUR1 potassium channels rescues diminishing of DA neurons via decreasing iron accumulation in PD. Mol. Cell. Neurosci. 92, 164–176. https://doi.org/10.1016/j.mcn.2018.08.006 (2018).

    Google Scholar 

  47. Kim, J. et al. miR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1). Mol. Neurodegener. 11, 55. https://doi.org/10.1186/s13024-016-0121-4 (2016).

    Google Scholar 

  48. Rajagopalan, S., Rane, A., Chinta, S. J. & Andersen, J. K. Regulation of ATP13A2 via PHD2-HIF1alpha signaling is critical for cellular iron homeostasis: implications for parkinson’s disease. J. Neurosci. 36, 1086–1095. https://doi.org/10.1523/JNEUROSCI.3117-15.2016 (2016).

    Google Scholar 

  49. Mochizuki, H. & Yasuda, T. Iron accumulation in parkinson’s disease. J. Neural Transm (Vienna). 119, 1511–1514. https://doi.org/10.1007/s00702-012-0905-9 (2012).

    Google Scholar 

  50. Borie, C. et al. Association study between iron-related genes polymorphisms and parkinson’s disease. J. Neurol. 249, 801–804. https://doi.org/10.1007/s00415-002-0704-6 (2002).

    Google Scholar 

  51. Salazar, J. et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of parkinson’s disease. Proc. Natl. Acad. Sci. U S A. 105, 18578–18583. https://doi.org/10.1073/pnas.0804373105 (2008).

    Google Scholar 

  52. Devos, D. et al. Trial of deferiprone in parkinson’s disease. N Engl. J. Med. 387, 2045–2055. https://doi.org/10.1056/NEJMoa2209254 (2022).

    Google Scholar 

Download references

Acknowledgements

We thank the members of Inden’s lab for helpful discussions. This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant No. 22K06744 to MI), a Grant-in-Aid for Scientific Research on Innovative Areas JSPS KAKENHI (JP19H05767A02 to IH) a grant from the Smoking Research Foundation (Grant No. 2021G021) to MI, JST SPRING (Grant No. JPMJSP2142 to TM), and a grant from the Takeda Science Foundation to MI.

Funding

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant No. 22K06744 to MI), a Grant-in-Aid for Scientific Research on Innovative Areas JSPS KAKENHI (JP19H05767A02 to IH), a grant from the Smoking Research Foundation (Grant No. 2021G021) to MI, JST SPRING (Grant No. JPMJSP2142 to TM) and a grant from the Takeda Science Foundation to MI.

Author information

Authors and Affiliations

  1. Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, Gifu, 501-1196, Japan

    Takanori Murakami, Kazuki Ohuchi, Masanori Kiuchi, Hisaka Kurita, Isao Hozumi & Masatoshi Inden

  2. Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, Gifu, 501-1196, Japan

    Kanta Kawai, Ryo Kakiuchi, Tasuku Hirayama & Hideko Nagasawa

  3. Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan

    Zhiliang Wu & Yoichi Maekawa

  4. Division of Preemptive Food Research, Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Science (GUIAS), Gifu, 501-1194, Japan

    Yoichi Maekawa

  5. Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Science (GUIAS), Gifu, 501-1194, Japan

    Yoichi Maekawa

Authors
  1. Takanori Murakami
    View author publications

    Search author on:PubMed Google Scholar

  2. Kazuki Ohuchi
    View author publications

    Search author on:PubMed Google Scholar

  3. Masanori Kiuchi
    View author publications

    Search author on:PubMed Google Scholar

  4. Hisaka Kurita
    View author publications

    Search author on:PubMed Google Scholar

  5. Kanta Kawai
    View author publications

    Search author on:PubMed Google Scholar

  6. Ryo Kakiuchi
    View author publications

    Search author on:PubMed Google Scholar

  7. Tasuku Hirayama
    View author publications

    Search author on:PubMed Google Scholar

  8. Hideko Nagasawa
    View author publications

    Search author on:PubMed Google Scholar

  9. Zhiliang Wu
    View author publications

    Search author on:PubMed Google Scholar

  10. Yoichi Maekawa
    View author publications

    Search author on:PubMed Google Scholar

  11. Isao Hozumi
    View author publications

    Search author on:PubMed Google Scholar

  12. Masatoshi Inden
    View author publications

    Search author on:PubMed Google Scholar

Contributions

TM, KO and MI. designed the experiments. TM, KO, MK, HK, KK, RK, and ZW performed the experiments. TM, KO, HK, TH, ZW and MI analyzed the data. TM, KO and MI wrote and edited the manuscript. HN, YM and IH supervised the project. IH and MI acquired funding.

Corresponding author

Correspondence to Masatoshi Inden.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murakami, T., Ohuchi, K., Kiuchi, M. et al. Disruption of intracellular iron homeostasis through mitochondrial dysfunction associated with suppression of ATP 13A2 expression. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35368-x

Download citation

  • Received: 12 June 2025

  • Accepted: 05 January 2026

  • Published: 10 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-35368-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Intracellular iron homeostasis
  • Parkinson’s disease
  • PARK9
  • ATP13A2
  • Lysosome
  • Mitochondria
  • Mitophagy
  • Transferrin receptor
  • IRP2
  • Heme
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing