Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Horizontal saccade bias results from combination of saliency anisotropies and egocentric biases
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 22 January 2026

Horizontal saccade bias results from combination of saliency anisotropies and egocentric biases

  • Stephanie M. Reeves1 &
  • Jorge Otero-Millan1,2 

Scientific Reports , Article number:  (2026) Cite this article

  • 275 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Human behaviour
  • Saccades

Abstract

Saccadic eye movements shift the fovea between objects of interest to build a visual percept. In humans, saccades are predominantly executed along the cardinal axes, particularly in the horizontal direction. It is unknown how this horizontal saccade bias could arise mechanistically, though previous work suggests contributions from neural, image-based, and ocular motor factors. Here we used two publicly available eye movement datasets to first investigate which image features–spatial frequency, saliency, and structural content–relate to the horizontal saccade bias. Among the three image features, we found that orientation anisotropies in saliency content best predicted the strength of the horizontal saccade bias. Based on this result, we next implemented a saccade target selection model combining allocentric biases aligned with image orientation and egocentric biases aligned with eye or head orientation, independent of image content. As in prior work, this combination successfully replicated human saccade distributions during free viewing of upright images. When applied to tilted images, the model produced effects of image tilt and saccade size that were correlated with prior empirical findings, though with reduced amplitude, suggesting that current saliency models do not fully capture image effects. Taken together, these results suggest that saccade generation reflects both the allocentric biases present in the structure of natural scenes and the egocentric biases present in the saccade generation system itself. An open question is why the egocentric saccade bias exists, but our results suggest that it is adaptive in response to regularities in the world and our typical upright orientation.

Similar content being viewed by others

Adaptive changes to saccade amplitude and target localization do not require pre-saccadic target visibility

Article Open access 23 May 2023

Recent, but not long-term, priors induce behavioral oscillations in peri-saccadic vision

Article Open access 17 March 2025

A distributed saccade-associated network encodes high velocity conjugate and monocular eye movements in the zebrafish hindbrain

Article Open access 16 June 2021

Data availability

The eye movement data used in this manuscript have been previously published and made available for public download by van der Linde and colleagues 36 and Reeves and colleagues 11 .

References

  1. Tatler, B. W. & Vincent, B. T. The prominence of behavioural biases in eye guidance. Vis. Cogn. 17, 1029–1054 (2009).

    Google Scholar 

  2. Foulsham, T., Kingstone, A. & Underwood, G. Turning the world around: patterns in saccade direction vary with picture orientation. Vis. Res. 48, 1777–1790 (2008).

    Google Scholar 

  3. Otero-Millan, J., Macknik, S. L., Langston, R. E. & Martinez-Conde S. An oculomotor continuum from exploration to fixation. Proc. Natl. Acad. Sci. 110, 6175–6180 (2013).

  4. Bischof, W. F., Anderson, N. C., Doswell, M. T. & Kingstone, A. Visual exploration of omnidirectional panoramic scenes. J. Vis. 20, 23 (2020).

    Google Scholar 

  5. Anderson, N. C., Bischof, W. F., Foulsham, T. & Kingstone, A. Turning the (virtual) world around: patterns in saccade direction vary with picture orientation and shape in virtual reality. J. Vis. 20, 21 (2020).

    Google Scholar 

  6. Lee, S. P. & Badler, J. B. & Badler, N. I. Eyes alive. in ACM Transactions on Graphics (TOG) vol. 21 637–644 (ACM, (2002).

  7. Bays, P. M. & Husain, M. Active Inhibition and memory promote exploration and search of natural scenes. J. Vis. 12, 8–8 (2012).

    Google Scholar 

  8. Gilchrist, I. D. & Harvey, M. Evidence for a systematic component within scan paths in visual search. Vis. Cogn. 14, 704–715 (2006).

    Google Scholar 

  9. Najemnik, J. & Geisler, W. S. Optimal eye movement strategies in visual search. Nature 434, 387–391 (2005).

    Google Scholar 

  10. Burlingham, C. S., Sendhilnathan, N., Komogortsev, O., Murdison, T. S. & Proulx, M. J. Motor laziness constrains fixation selection in real-world tasks. Proc. Natl. Acad. Sci. 121, e2302239121 (2024).

  11. Reeves, S. M. & Otero-Millan, J. The influence of scene Tilt on saccade directions is amplitude dependent. J. Neurol. Sci. 448, 120635 (2023).

    Google Scholar 

  12. Liang, J. R. et al. Scaling of horizontal and vertical fixational eye movements. Phys Rev. E 71, 85 (2005).

  13. Bowers, N. R., Gautier, J., Lin, S. & Roorda, A. Fixational eye movements in passive versus active sustained fixation tasks. J. Vis. 21, 16 (2021).

    Google Scholar 

  14. Lee, Y. T. et al. Disrupted microsaccade responses in late-life depression. Sci. Rep. 15, 2827 (2025).

    Google Scholar 

  15. Van Renswoude, D. R., Johnson, S. P., Raijmakers, M. E. J. & Visser, I. Do infants have the horizontal bias? Infant Behav. Dev. 44, 38–48 (2016).

    Google Scholar 

  16. Abed, F. Cultural influences on visual scanning patterns. J. Cross-Cult Psychol. 22, 525–534 (1991).

    Google Scholar 

  17. Koevoet, D. et al. Effort Drives Saccade Selection eLife 13, 50 (2025).

  18. Coppola, D. M., Purves, H. R., McCoy, A. N. & Purves, D. The distribution of oriented contours in the real world. Proc. Natl. Acad. Sci. 95, 4002–4006 (1998).

  19. Switkes, E., Mayer, M. J. & Sloan, J. A. Spatial frequency analysis of the visual environment: anisotropy and the carpentered environment hypothesis. Vis. Res. 18, 1393–1399 (1978).

    Google Scholar 

  20. van der Schaaf, A. & van Hateren, J. H. Modelling the power spectra of natural images: statistics and information. Vis. Res. 36, 2759–2770 (1996).

    Google Scholar 

  21. Girshick, A. R., Landy, M. S. & Simoncelli, E. P. Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nat. Neurosci. 14, 926–932 (2011).

    Google Scholar 

  22. Howard, I. P. Human Visual Orientation (J. Wiley, 1982).

  23. Bonds, A. B. An oblique effect in the visual evoked potential of the Cat. Exp. Brain Res. 46, 151–154 (1982).

    Google Scholar 

  24. Raman, R. & Sarkar, S. Significance of natural scene statistics in Understanding the anisotropies of perceptual Filling-in at the blind spot. Sci. Rep. 7, 3586 (2017).

    Google Scholar 

  25. Araragi, Y. & Nakamizo, S. Anisotropy of tolerance of perceptual completion at the blind spot. Vis. Res. 48, 618–625 (2008).

    Google Scholar 

  26. Mitchell, D. E., Freeman, R. D. & Westheimer, G. Effect of orientation on the modulation sensitivity for interference fringes on the Retina*. J. Opt. Soc. Am. 57, 246 (1967).

    Google Scholar 

  27. Harrison, W. J., Bays, P. M. & Rideaux, R. Neural tuning instantiates prior expectations in the human visual system. Nat. Commun. 14, 5320 (2023).

    Google Scholar 

  28. Keil, M. S. & Cristóbal, G. Separating the chaff from the wheat: possible origins of the oblique effect. J. Opt. Soc. Am. A. 17, 697 (2000).

    Google Scholar 

  29. Li, B., Peterson, M. R. & Freeman, R. D. Oblique effect: A neural basis in the visual cortex. J. Neurophysiol. 90, 204–217 (2003).

    Google Scholar 

  30. Dragoi, V., Turcu, C. M. & Sur, M. Stability of cortical responses and the statistics of natural scenes. Neuron 32, 1181–1192 (2001).

    Google Scholar 

  31. Barbot, A., Xue, S. & Carrasco, M. Asymmetries in visual acuity around the visual field. J. Vis. 21, 2 (2021).

    Google Scholar 

  32. Himmelberg, M. M., Winawer, J. & Carrasco, M. Polar angle asymmetries in visual perception and neural architecture. Trends Neurosci. 46, 445–458 (2023).

    Google Scholar 

  33. Simoncelli, E. P. & Olshausen, B. A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001).

    Google Scholar 

  34. Field, D. J. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A. 4, 2379 (1987).

    Google Scholar 

  35. Reeves, S. M., Cooper, E. A., Rodriguez, R. & Otero-Millan, J. Head Orientation Influences Saccade Directions during Free Viewing. eneuro 9, ENEURO.0273-22.2022 (2022).

  36. Bovik, A., Cormack, L., Van Der Linde, I. & Rajashekar, U. DOVES: a database of visual eye movements. Spat. Vis. 22, 161–177 (2009).

    Google Scholar 

  37. Sadeghi, R., Ressmeyer, R., Yates, J. & Otero-Millan, J. Open Iris - An Open Source Framework for Video-Based Eye-Tracking Research and Development. in Proceedings of the 2024 Symposium on Eye Tracking Research and Applications 1–7ACM, Glasgow United Kingdom, (2024). https://doi.org/10.1145/3649902.3653348

  38. Engbert, R. & Kliegl, R. Microsaccades uncover the orientation of Covert attention. Vis. Res. 43, 1035–1045 (2003).

    Google Scholar 

  39. Linardos, A., Kümmerer, M., Press, O., Bethge, M. & DeepGaze, I. I. E. Calibrated prediction in and out-of-domain for state-of-the-art saliency modeling. Preprint at (2021). http://arxiv.org/abs/2105.12441

  40. Le Meur, O. & Liu, Z. Saccadic model of eye movements for free-viewing condition. Vis. Res. 116, 152–164 (2015).

    Google Scholar 

  41. Kümmerer, M., Bethge, M., Wallis, T. S. A. & DeepGaze, I. I. I. Modeling free-viewing human scanpaths with deep learning. J. Vis. 22, 7 (2022).

    Google Scholar 

  42. Sun, W., Chen, Z. & Wu, F. Visual scanpath prediction using IOR-ROI recurrent mixture density network. IEEE Trans. Pattern Anal. Mach. Intell. 43, 2101–2118 (2021).

    Google Scholar 

  43. Saez, D. Correcting Image Orientation Using Convolutional Neural Networks. (2017). https://d4nst.github.io/2017/01/12/image-orientation/

  44. Chong, I. G. & Jun, C. H. Performance of some variable selection methods when multicollinearity is present. Chemom Intell. Lab. Syst. 78, 103–112 (2005).

    Google Scholar 

  45. Alberts, B. B. G. T., de Brouwer, A. J., Selen, L. P. J. & Medendorp, W. P. A Bayesian Account of Visuo-Vestibular Interactions in the Rod-and-Frame Task. eneuro ENEURO.0093-16.2016 (2016). https://doi.org/10.1523/ENEURO.0093-16.2016

  46. Pansell, T., Sverkersten, U. & Ygge, J. Visual Spatial clues enhance ocular torsion response during visual Tilt. Exp. Brain Res. 175, 567–574 (2006).

    Google Scholar 

  47. Linka, M., Karimpur, H. & de Haas, B. Protracted development of gaze behaviour. Nat. Hum. Behav. 1–11. https://doi.org/10.1038/s41562-025-02191-9 (2025).

  48. Costela, F. M. et al. Characteristics of spontaneous Square-Wave jerks in the healthy macaque monkey during visual fixation. PLoS ONE. 10, e0126485 (2015).

    Google Scholar 

  49. Snodderly, D. M. Effects of light and dark environments on macaque and human fixational eye movements. Vis. Res. 27, 401–415 (1987).

    Google Scholar 

  50. Willett, S. M. & Mayo, J. P. Microsaccades are directed toward the midpoint between targets in a variably cued attention task. Proc. Natl. Acad. Sci. 120, e2220552120 (2023).

  51. Kobayashi, H. & Kohshima, S. Unique morphology of the human eye and its adaptive meaning: comparative studies on external morphology of the primate eye. J. Hum. Evol. 40, 419–435 (2001).

    Google Scholar 

  52. Robinson, D. A. Eye movements evoked by collicular stimulation in the alert monkey. Vis. Res. 12, 1795–1808 (1972).

    Google Scholar 

  53. Wang, L., Liu, M., Segraves, M. A. & Cang, J. Visual experience is required for the development of eye movement maps in the mouse superior colliculus. J. Neurosci. 35, 12281–12286 (2015).

    Google Scholar 

  54. Lowe, K. A., Zinke, W., Cosman, J. D. & Schall, J. D. Frontal eye fields in macaque monkeys: prefrontal and premotor contributions to visually guided saccades. Cereb. Cortex. 32, 5083–5107 (2022).

    Google Scholar 

  55. Poletti, M., Intoy, J. & Rucci, M. Accuracy and precision of small saccades. Sci. Rep. 10, 16097 (2020).

    Google Scholar 

  56. Pitzalis, S. & Di Russo, F. Spatial anisotropy of saccadic latency in normal subjects and Brain-Damaged patients. Cortex 37, 475–492 (2001).

    Google Scholar 

  57. Jensen, K., Beylergil, S. B. & Shaikh, A. G. Slow saccades in cerebellar disease. Cerebellum Ataxias. 6, 1 (2019).

    Google Scholar 

  58. Ohl, S., Kroell, L. M. & Rolfs, M. Saccadic selection in visual working memory is robust across the visual field and linked to saccade metrics: evidence from nine experiments and more than 100,000 trials. J. Exp. Psychol. Gen. 153, 544–563 (2024).

    Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by the National Eye Institute Award R00EY027846, the National Institutes of Health Training Grant 5T32EY007043-43, and the UC Berkeley Center for the Innovation in Vision and Optics (CIVO). The authors would like to thank Emily A Cooper for her comments.

Funding

for this work was provided by the National Eye Institute Award R00EY027846, the National Institutes of Health Training Grant 5T32EY007043-43, and the UC Berkeley Center for the Innovation in Vision and Optics (CIVO). The authors would like to thank Emily A Cooper for her comments.

Author information

Authors and Affiliations

  1. Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, CA, 94720, USA

    Stephanie M. Reeves & Jorge Otero-Millan

  2. Department of Neurology, Johns Hopkins University, Baltimore, MD, 21231, USA

    Jorge Otero-Millan

Authors
  1. Stephanie M. Reeves
    View author publications

    Search author on:PubMed Google Scholar

  2. Jorge Otero-Millan
    View author publications

    Search author on:PubMed Google Scholar

Contributions

SMR and JOM designed the research, SMR conducted the data analysis, SMR and JOM directed and reviewed analysis, SMR and JOM wrote and reviewed the manuscript.

Corresponding author

Correspondence to Stephanie M. Reeves.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reeves, S.M., Otero-Millan, J. Horizontal saccade bias results from combination of saliency anisotropies and egocentric biases. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35572-9

Download citation

  • Received: 14 April 2025

  • Accepted: 07 January 2026

  • Published: 22 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-35572-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Saccade directions
  • Natural scene statistics
  • Saccade targeting
  • Saliency prediction models
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing