Abstract
Sparse principal component analysis (SPCA) and independent component analysis (ICA) pipelines are widely used for fMRI blind source separation. However, applying sparsity and independence constraints in isolation can distort spatial coherence and degrade source recovery when networks overlap or exhibit strong spatial dependencies. To address these shortcomings, we propose a novel unified structured dissociative PCA framework that performs source separation by jointly learning dissociation matrices (unmixers) for singular value decomposition (SVD) and representation matrices (reconstructors) for structured basis representation within a single decomposition. Our approach integrates spatiotemporal priors (temporal DCTs, spatial splines, and hemodynamic response models) into the SVD decomposition and solves it using two algorithms: block coordinate descent (SDPCAG) and coordinate descent (SDPCAC). Both algorithms employ adaptive row-wise sparsity to disentangle overlapping sources and denoise each source through correlation-guided least-squares reconstruction with domain specific constraints. This dual-decomposition strategy, which learned iteratively, allows precise recovery of spatially coherent brain networks while maintaining temporal fidelity. The effectiveness of the proposed algorithms is illustrated on three types of fMRI datasets including synthetic, block-design, and event-related paradigms. Across all scenarios, the proposed methods consistently achieved superior performance compared to existing state-of-the-art techniques, including PMD, ACSDBE, and SICA. Overall, SDPCAG achieved a 22% improvement over ACSDBE in source recovery accuracy. Computationally, SDPCAG achieved 1.6 times faster execution compared to SDPCAC across the experimental datasets while producing comparable results. The source codes are available at https://github.com/usmankhalid06/SDPCA.
References
Pearson, K. L. I. I. I. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2, 559–572. https://doi.org/10.1080/14786440109462720 (1901).
Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441. https://doi.org/10.1037/h0071325 (1933).
Koch, I. Analysis of Multivariate and High-Dimensional Data (Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press, Cambridge, 2013).
Andersen, A. H., Gash, D. M. & Avison, M. J. Principal component analysis of the dynamic response measured by fMRI: A generalized linear systems framework. Magn. Reson. Imaging 17, 795–815. https://doi.org/10.1016/S0730-725X(99)00028-4 (1999).
Khalid, M. U., Shah, A. & Seghouane, A.-K. Sparse dictionary learning for fMRI analysis using autocorrelation maximization. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 4286–4289 (2015).
Helena, B. et al. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res. 34, 807–816. https://doi.org/10.1016/S0043-1354(99)00225-0 (2000).
Ding, C. & He, X. K-means clustering via principal component analysis. In Proceedings of the Twenty-First International Conference on Machine Learning, ICML ’04, 29, https://doi.org/10.1145/1015330.1015408 (Association for Computing Machinery, New York, NY, USA, 2004).
Beyer, H. Tukey. John W.: Exploratory Data Analysis. Addison-Wesley Publishing Company Reading, Mass. – Menlo Park, Cal., London, Amsterdam, Don Mills, Ontario, Sydney,. XVI, 688 S. Biometrical Journal23(413–414), 1981. https://doi.org/10.1002/bimj.4710230408 (1977).
Stewart, G. W. On the Early History of the Singular Value Decomposition. SIAM Rev. 35, 551–566. https://doi.org/10.1137/1035134 (1993).
Jolliffe, I. T. & Cadima, J. Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, 20150202. https://doi.org/10.1098/rsta.2015.0202 (2016).
Seghouane, A.-K., Shokouhi, N. & Koch, I. Sparse Principal Component Analysis With Preserved Sparsity Pattern. IEEE Trans. Image Process. 28, 3274–3285. https://doi.org/10.1109/TIP.2019.2895464 (2019).
Paatero, P. & Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126. https://doi.org/10.1002/env.3170050203 (1994).
Calhoun, V. D., Adali, T., Pearlson, G. D. & Pekar, J. J. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14, 140–151. https://doi.org/10.1002/hbm.1048 (2001).
Friman, O., Borga, M., Lundberg, P. & Knutsson, H. Exploratory fMRI analysis by autocorrelation maximization. Neuroimage 16, 454–464. https://doi.org/10.1006/nimg.2002.1067 (2002).
Choi, S., Cichocki, A., Park, H.-M. & Lee, S.-Y. Blind source separation and independent component analysis: A review. Neural Inf. Process. Lett. Rev6 (2004).
Krishnan, A., Williams, L. J., McIntosh, A. R. & Abdi, H. Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review. Neuroimage 56, 455–475. https://doi.org/10.1016/j.neuroimage.2010.07.034 (2011).
Shah, A., Khalid, M. U. & Seghouane, A.-K. Comparing causality measures of fMRI data using PCA, CCA and vector autoregressive modelling. In International Conference of the IEEE Engineering in Medicine and Biology Society, 6184–6187 (2012).
Ge, R. et al. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources. J. Neurosci. Methods 263, 103–114. https://doi.org/10.1016/j.jneumeth.2016.02.010 (2016).
Boukouvalas, Z., Levin-Schwartz, Y., Calhoun, V. D. & Adalı, T. Sparsity and Independence: Balancing Two Objectives in Optimization for Source Separation with Application to fMRI Analysis. J. Franklin Inst. 355, 1873–1887. https://doi.org/10.1016/j.jfranklin.2017.07.003 (2018).
Jeffers, J. N. R. Two Case Studies in the Application of Principal Component Analysis. Journal of the Royal Statistical Society. Series C (Applied Statistics)16, 225–236, https://doi.org/10.2307/2985919 (1967). .
Zou, H. & Xue, L. A Selective Overview of Sparse Principal Component Analysis. Proc. IEEE 106, 1311–1320. https://doi.org/10.1109/JPROC.2018.2846588 (2018).
Tillmann, A. M. & Pfetsch, M. E. The Computational Complexity of the Restricted Isometry Property, the Nullspace Property, and Related Concepts in Compressed Sensing. IEEE Trans. Inf. Theory 60, 1248–1259. https://doi.org/10.1109/TIT.2013.2290112 (2014).
Wang, T., Berthet, Q. & Samworth, R. J. Statistical and computational trade-offs in estimation of sparse principal components. Ann. Stat. 44, 1896–1930. https://doi.org/10.1214/15-AOS1369 (2016).
Guerra-Urzola, R., Van Deun, K., Vera, J. C. & Sijtsma, K. A Guide for Sparse PCA: Model Comparison and Applications. Psychometrika 86, 893–919. https://doi.org/10.1007/s11336-021-09773-2 (2021).
Jolliffe, I. T., Trendafilov, N. T. & Uddin, M. A Modified Principal Component Technique Based on the LASSO. J. Comput. Graph. Stat. 12, 531–547. https://doi.org/10.1198/1061860032148 (2003).
Zou, H., Hastie, T. & Tibshirani, R. Sparse Principal Component Analysis. J. Comput. Graph. Stat. 15, 265–286. https://doi.org/10.1198/106186006X113430 (2006).
d’Aspremont, A., Ghaoui, L. E., Jordan, M. I. & Lanckriet, G. R. G. A Direct Formulation for Sparse PCA Using Semidefinite Programming. SIAM Rev. 49, 434–448 (2007).
Witten, D. M., Tibshirani, R. & Hastie, T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics (Oxford, England) 10, 515–534. https://doi.org/10.1093/biostatistics/kxp008 (2009).
Ma, Z. Sparse principal component analysis and iterative thresholding. Ann. Stat. 41, 772–801. https://doi.org/10.1214/13-AOS1097 (2013).
Journée, M., Nesterov, Y., Richtárik, P. & Sepulchre, R. Generalized Power Method for Sparse Principal Component Analysis. J. Mach. Learn. Res. 11, 517–553 (2010).
Yuan, X.-T. & Zhang, T. Truncated power method for sparse eigenvalue problems. J. Mach. Learn. Res. 14, 899–925 (2013).
Mattei, P.-A., Bouveyron, C. & Latouche, P. Globally Sparse Probabilistic PCA. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, 976–984 (PMLR, Spain, 2016).
Qiu, Y., Lei, J. & Roeder, K. Gradient-based sparse principal component analysis with extensions to online learning. Biometrika 110, 339–360. https://doi.org/10.1093/biomet/asac041 (2023).
Chen, F. & Rohe, K. A New Basis for Sparse Principal Component Analysis. J. Comput. Graph. Stat. 33, 421–434. https://doi.org/10.1080/10618600.2023.2256502 (2024).
Witten, D. & Tibshirani, R. Extensions of sparse canonical correlation analysis with applications to genomic data. Statistical applications in genetics and molecular biology8, https://doi.org/10.2202/1544-6115.1470 (2009).
Mckeown, M. J. et al. Analysis of fMRI data by blind separation into independent spatial components. Hum. Brain Mapp. 6, 160–188 (1998).
Calhoun, V. D. & Adalı, T. Multisubject independent component analysis of fMRI: A decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Rev. Biomed. Eng. 5, 60–73. https://doi.org/10.1109/RBME.2012.2211076 (2012).
Huang, Y. et al. Detection of functional networks within white matter using independent component analysis. Neuroimage 222, 117278. https://doi.org/10.1016/j.neuroimage.2020.117278 (2020).
Laird, A. R. et al. Behavioral interpretations of intrinsic connectivity networks. J. Cogn. Neurosci. 23, 4022–4037. https://doi.org/10.1162/jocn_a_00077 (2011).
Zhang, W. et al. Experimental Comparisons of Sparse Dictionary Learning and Independent Component Analysis for Brain Network Inference From fMRI Data. I.E.E.E. Trans. Biomed. Eng. 66, 289–299. https://doi.org/10.1109/TBME.2018.2831186 (2019).
Zhang, W. et al. Experimental Comparisons of Sparse Dictionary Learning and Independent Component Analysis for Brain Network Inference From fMRI Data. IEEE Trans. Biomed. Eng. 66, 289–299. https://doi.org/10.1109/TBME.2018.2831186 (2019).
Khalid, M. U. Enhancing Blind Source Separation with Dissociative Principal Component Analysis, https://doi.org/10.48550/arXiv.2411.12321 (2024).
Yang, Z. et al. Performing Sparse Regularization and Dimension Reduction Simultaneously in Multimodal Data Fusion. Front. Neurosci. 13, 642. https://doi.org/10.3389/fnins.2019.00642 (2019).
Alarjani, M. & Almarri, B. fMRI-based Alzheimer’s disease detection via functional connectivity analysis: A systematic review. PeerJ. Computer Science 10, e2302. https://doi.org/10.7717/peerj-cs.2302 (2024).
Supekar, K., Menon, V., Rubin, D., Musen, M. & Greicius, M. D. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput. Biol. 4, e1000100. https://doi.org/10.1371/journal.pcbi.1000100 (2008).
Dong, D., Wang, Y., Chang, X., Luo, C. & Yao, D. Dysfunction of Large-Scale Brain Networks in Schizophrenia: A Meta-analysis of Resting-State Functional Connectivity. Schizophr. Bull. 44, 168–181. https://doi.org/10.1093/schbul/sbx034 (2018).
Golestani, A. M. & Chen, J. J. Performance of Temporal and Spatial Independent Component Analysis in Identifying and Removing Low-Frequency Physiological and Motion Effects in Resting-State fMRI. Front. Neurosci. 16, 867243. https://doi.org/10.3389/fnins.2022.867243 (2022).
Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609. https://doi.org/10.1038/381607a0 (1996).
Seghouane, A.-K. & Khalid, M. U. Hierarchical sparse brain network estimation. In 2012 IEEE International Workshop on Machine Learning for Signal Processing, 1–6 (2012).
Tang, M. & Wu, Y. A Blind Source Separation Method Based on Bounded Component Analysis Optimized by the Improved Beetle Antennae Search. Sensors 23, 8325. https://doi.org/10.3390/s23198325 (2023).
Hyvärinen, A. & Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 13, 411–430. https://doi.org/10.1016/S0893-6080(00)00026-5 (2000).
Aharon, M., Elad, M. & Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 4311–4322. https://doi.org/10.1109/TSP.2006.881199 (2006).
Khalid, M. U., Shah, A. & Seghouane, A.-K. Adaptive 2DCCA Based Approach for Improving Spatial Specificity of Activation Detection in Functional MRI. In International Conference on Digital Image Computing Techniques and Applications (DICTA), 1–6 (2012).
Friston, K. J. Modalities, modes, and models in functional neuroimaging. Science (New York, N.Y.)326, 399–403, https://doi.org/10.1126/science.1174521 (2009).
Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. 106, 13040–13045. https://doi.org/10.1073/pnas.0905267106 (2009).
Bai, J. & Ng, S. Determining the Number of Factors in Approximate Factor Models. Econometrica 70, 191–221. https://doi.org/10.1111/1468-0262.00273 (2002).
Khalid, M. U., Nauman, M. M., AlSagri, H. S. & Bin Pg Hj Petra, P. M. I. Simultaneously capturing excessive variations and smooth dynamics of the underlying neural activity using spatiotemporal basis expansion and multisubject fMRI data. Scientific Reports15, 13638, https://doi.org/10.1038/s41598-025-97651-7 (2025).
Tseng, P. Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization. J. Optim. Theory Appl. 109, 475–494. https://doi.org/10.1023/A:1017501703105 (2001).
Wright, S. J. Coordinate Descent Algorithms, https://doi.org/10.48550/arXiv.1502.04759 (2015).
Zou, H. The Adaptive Lasso and Its Oracle Properties. J. Am. Stat. Assoc. 101, 1418–1429. (2006).
Fu, W. J. Penalized Regressions: The Bridge versus the Lasso. J. Comput. Graph. Stat. 7, 397–416. (1998).
Gribonval, R., Rauhut, H., Schnass, K. & Vandergheynst, P. Atoms of All Channels, Unite! Average Case Analysis of Multi-Channel Sparse Recovery Using Greedy Algorithms. J. Fourier Anal. Appl. 14, 655–687. https://doi.org/10.1007/s00041-008-9044-y (2008).
Erhardt, E., Allen, E., Wei, Y., Eichele, T. & Calhoun, V. SimTB, a simulation toolbox for fMRI data under a model of spatiotemporal separability. Neuroimage 59, 4160–7. https://doi.org/10.1016/j.neuroimage.2011.11.088 (2011).
Van Essen, D. C. et al. The Human Connectome Project: A data acquisition perspective. Neuroimage 62, 2222–2231 (2012).
Barch, D. M. et al. Function in the human connectome: Task-fMRI and individual differences in behavior. Neuroimage 80, 169–189. https://doi.org/10.1016/j.neuroimage.2013.05.033 (2013).
Kangjoo Lee, Sungho Tak & Jong Chul Ye. A Data-Driven Sparse GLM for fMRI Analysis Using Sparse Dictionary Learning With MDL Criterion. IEEE Transactions on Medical Imaging30, 1076–1089, https://doi.org/10.1109/TMI.2010.2097275 (2011).
Ting, C.-M., Seghouane, A.-K., Khalid, M. U. & Salleh, S.-H. Is First-Order Vector Autoregressive Model Optimal for fMRI Data?. Neural Comput. 27, 1857–1871. (2015).
Seghouane, A.-K. & Iqbal, A. Consistent adaptive sequential dictionary learning. Signal Process. 153, 300–310. https://doi.org/10.1016/j.sigpro.2018.07.018 (2018).
Seghouane, A.-K. & Iqbal, A. Basis Expansion Approaches for Regularized Sequential Dictionary Learning Algorithms With Enforced Sparsity for fMRI Data Analysis. IEEE Trans. Med. Imaging 36, 1796–1807. https://doi.org/10.1109/TMI.2017.2699225 (2017).
Wang, Z., , G., Irina, , A., Aleksandr & and Risk, B. B. Sparse Independent Component Analysis with an Application to Cortical Surface fMRI Data in Autism. Journal of the American Statistical Association119, 2508–2520, https://doi.org/10.1080/01621459.2024.2370593 (2024).
Rorden, C. & Brett, M. Stereotaxic Display of Brain Lesion. Behav. Neurol. 12, 191–200. https://doi.org/10.1155/2000/421719 (2000).
Erhardt, E. B. et al. Comparison of multi-subject ICA methods for analysis of fMRI data. Hum. Brain Mapp. 32, 2075–2095. https://doi.org/10.1002/hbm.21170 (2011).
Penny, W., Friston, K., Ashburner, J., Kiebel, S. & Nichols, T. Statistical Parametric Mapping: The Analysis of Functional Brain Images (Academic Press, London, 2007).
Seghouane, A.-K. & Khalid, M. U. Learning dictionaries from correlated data: Application to fMRI data analysis. In IEEE International Conference on Image Processing (ICIP), 2340–2344 (2016).
Khalid, M. U. & Seghouane, A.-K. Unsupervised detrending technique using sparse dictionary learning for fMRI preprocessing and analysis. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 917–921 (2015).
Wang, F., Ke, H. & Cai, C. Deep Wavelet Self-Attention Non-negative Tensor Factorization for non-linear analysis and classification of fMRI data. Appl. Soft Comput. 182, 113522. https://doi.org/10.1016/j.asoc.2025.113522 (2025).
Iqbal, A., Seghouane, A.-K. & Adali, T. Shared and Subject-Specific Dictionary Learning (ShSSDL) Algorithm for Multisubject fMRI Data Analysis. I.E.E.E. Trans. Biomed. Eng. 65, 2519–2528. https://doi.org/10.1109/TBME.2018.2806958 (2018).
Maglanoc, L. A. et al. Multimodal fusion of structural and functional brain imaging in depression using linked independent component analysis. Hum. Brain Mapp. 41, 241–255. https://doi.org/10.1002/hbm.24802 (2020).
Funding
The work presented in the article is financially supported by Universiti Brunei Darussalam, Brunei Darussalam, through its University Research Grant scheme (UBD/RSCH/1.3/FICBF(b)/2023/020)
Author information
Authors and Affiliations
Contributions
Muhammad Usman Khalid: Conception, Methodology, data acquisition, data collection, Implementation, Writing, Malik Muhammad Nauman: Management and Funding Acquisition, writing, Shafiq ur Rehman: Visualization, writing, Review and Editing, Liyanage Chandratilak De Silva: Critical Review, writing, Seyedali Mirjalili: Supervision, writing, Review, editing, All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethical Approval and Data/Code Availability
This study analyzed synthetic and previously collected data. The publicly available HCP block-design data were used in accordance with its data use terms. Additional datasets are available from the corresponding author upon reasonable request (subject to any applicable data use/sharing restrictions). The source code used in this work is available at https://github.com/usmankhalid06/SDPCA.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Khalid, M.U., Nauman, M.M., Rehman, S.U. et al. Structured dissociative PCA methods for high dimensional neuroimaging signal decomposition. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35764-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-35764-3