Table 2 Performance of four machine learning models in predicting cognitive and sleep disorders.

From: Handcrafted MRI radiomics of enlarged perivascular spaces and machine learning predict cognitive impairment and sleep disturbance in young adults

 

AUC (95% CI)

Accuracy

F1 score

Sensitivity

Specificity

Precision

GP for predicting cognitive impairment (MoCA < 26 vs. MoCA ≥ 26)

 Training

0.949 (0.900–0.998)

0.877

0.905

0.864

0.905

0.950

 Testing

0.818 (0.610–1.000)

0.706

0.762

0.727

0.667

0.800

DT for predicting subjective sleep quality (PSQI > 5 vs. PSQI ≤ 5)

 Training

0.865 (0.770–0.959)

0.846

0.886

0.907

0.727

0.867

 Testing

0.826 (0.616–1.000)

0.824

0.870

0.909

0.667

0.833

GP for predicting subjective sleep quality (ISI > 7 vs. ISI ≤ 7)

 Training

0.947 (0.888–1.000)

0.862

0.830

0.759

0.944

0.917

 Testing

0.757 (0.492–1.000)

0.765

0.714

0.713

0.800

0.714

DT for predicting excessive daytime sleepiness symptoms (ESS > 6 vs. ESS ≤ 6)

 Training

0.923 (0.867–0.978)

0.877

0.857

0.750

1.000

1.000

 Testing

0.875 (0.718–1.000)

0.824

0.800

0.750

0.889

0.857