Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Predicting multiphase flow and tracer transport for an underground chemical explosive test
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 February 2026

Predicting multiphase flow and tracer transport for an underground chemical explosive test

  • John P. Ortiz1,
  • Dolan D. Lucero1,
  • Esteban Rougier1,
  • Earl E. Knight1,
  • S. Michelle Bourret1,
  • Bradley G. Fritz2,
  • Miles A. Bodmer3,
  • Jason E. Heath3,
  • Chelsea W. Neil1,
  • Hakim Boukhalfa1,
  • Kristopher L. Kuhlman3,
  • Shawn Otto1,
  • Souheil Ezzedine4,
  • Barry L. Roberts3,
  • R. Charles Choens3,
  • George A. Zyvoloski5,
  • Philip H. Stauffer1 &
  • PE1 Experimental Team

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Engineering
  • Physics

Abstract

Detecting radionuclide gas seepage from clandestine underground nuclear tests is central to nonproliferation explosion monitoring research. Yet, early-time (<6 day) gas transport driven by the explosive pressure wave remains poorly constrained due to scarcity of field data. We simulate multi-phase gas transport in the vadose zone using pre-shot data from a recent chemical explosion in P-Tunnel at the Nevada National Security Site, USA. Despite using a simplified 2D-radial model, predictions of tracer arrival matched observations within one order-of-magnitude. Our results show how transient blast forcing rapidly mobilizes gases from the cavity into surrounding rock – critical for optimizing sensor placement and test planning. This unique integration of field data and modeling represents a significant improvement in our ability to predict gas migration from underground explosions. More broadly, it offers insights into the coupled dynamics of pressure waves and contaminant transport in the vadose zone, with implications for monitoring and hazard assessment.

Data availability

Data for this research are not publicly available until after Feb 9, 2026, following an embargo on the public release of the data from the sponsoring government organization. After this date, data will be made available via public repository. For reproducibility, experimental data used in the analysis will be included as individual text files in the Supporting Information for editor/reviewer purposes. Description of HE byproducts data are described in “HE Byproducts Metadata User Guide_02062023.pdf”. The HE byproducts tracer data files are uploaded separately for each borehole (e.g., “HEdata_GS1.csv”). Description of the xenon data is described in “README_PE1A_Radioxenon_Concentration.txt”. The xenon tracer data file is uploaded as “XeData.csv”. The experimental data will be uploaded either as Supporting Information or as a repository before publication, depending on sponsor approval.

References

  1. Kalinowski, M. B. et al. Discrimination of nuclear explosions against civilian sources based on atmospheric xenon isotopic activity ratios. Pure Appl. Geophys. 167, 517–539 (2010).

    Google Scholar 

  2. Sun, Y. & Carrigan, C. R. Modeling noble gas transport and detection for the comprehensive nuclear-test-ban treaty. Pure Appl. Geophys. 171, 735–750 (2014).

    Google Scholar 

  3. Auer, L. H., Rosenberg, N. D., Birdsell, K. H. & Whitney, E. M. The effects of barometric pumping on contaminant transport. J. Contam. Hydrol. 24, 145–166 (1996).

    Google Scholar 

  4. Neeper, D. A. Harmonic analysis of flow in open boreholes due to barometric pressure cycles. J. Contam. Hydrol. 60, 135–162 (2003).

    Google Scholar 

  5. Neeper, D. A. & Stauffer, P. H. Transport by oscillatory flow in soils with rate-limited mass transfer: 1. Theory. Vadose Zone J. 11, 1–14 (2012).

    Google Scholar 

  6. Nilson, R. H., Peterson, E. W., Lie, K. H., Burkhard, N. R. & Hearst, J. R. Atmospheric pumping: A mechanism causing vertical transport of contaminated gases through fractured permeable media. J. Geophys. Res. Solid Earth 96, 933–948 (1991).

    Google Scholar 

  7. Harp, D. R. et al. Immobile pore-water storage enhancement and retardation of gas transport in fractured rock. Transp. Porous Media. https://doi.org/10.1007/s11242-018-1072-8 (2018).

    Google Scholar 

  8. Harp, D. R., Ortiz, J. P. & Stauffer, P. H. Identification of dominant gas transport frequencies during barometric pumping of fractured rock. Sci. Rep. 9, 9537 (2019).

    Google Scholar 

  9. Avendaño, S. T., Harp, D. R., Kurwadkar, S., Ortiz, J. P. & Stauffer, P. H. Continental-scale geographic trends in barometric-pumping efficiency potential: A North American case study. Geophys. Res. Lett. 48, 1–10 (2021).

    Google Scholar 

  10. Myers, S. C. et al. A Multi-Physics Experiment for Low-Yield Nuclear Explosion Monitoring. https://www.osti.gov/biblio/2345984https://doi.org/10.2172/2345984 (2024).

  11. Lucero, D. D. et al. Permeability scaling relationships of volcanic tuff from core to field scale measurements. Sci. Rep. https://doi.org/10.1038/s41598-025-96835-5 (2025).

    Google Scholar 

  12. Zyvoloski, G. A. Stauffer, P. H. Implementation of High Temperature and Pressure Fluid Property Interpolation Tables. https://www.osti.gov/biblio/2426532https://doi.org/10.2172/2426532 (2024).

  13. United States. Dept. of Energy. Nevada Operations Office. United States Nuclear Tests: July 1945 Through September 1992. (2000).

  14. Wessel, P. et al. The generic mapping tools version 6. Geochem. Geophys. Geosystems 20, 5556–5564 (2019).

    Google Scholar 

  15. Sawyer, D. A. et al. Episodic caldera volcanism in the Miocene southwestern Nevada volcanic field: Revised stratigraphic framework, 40Ar/39Ar geochronology, and implications for magmatism and extension. GSA Bull. 106, 1304–1318 (1994).

    Google Scholar 

  16. Prothro, L., Drellack Jr., Sigmund Mercadante, J. A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada. DOE/NV/25946--630, 950486 http://www.osti.gov/servlets/purl/950486/https://doi.org/10.2172/950486 (2009).

  17. Prothro, L. Geologic Framework Model for the Underground Nuclear Explosions Signatures Experiment P Tunnel Testbed, Aqueduct Mesa, Nevada National Security Site. https://www.osti.gov/biblio/1495705https://doi.org/10.2172/1495705 (2018).

  18. Fritz, B. G., Peterson, J. A., Munley, W. O. & Boukhalfa, H. Description of the Gas Sampling and Circulation System for the LYNM PE1-A Experiment. https://www.osti.gov/biblio/2475191https://doi.org/10.2172/2475191 (2024).

  19. Bodmer, M. et al. LYNM PE1 Pre-Experiment A Site Characterization Report. SAND--2024-07522, 2429935 https://www.osti.gov/servlets/purl/2429935/https://doi.org/10.2172/2429935 (2024).

  20. Wilson, J. et al. PE1 Site Characterization: Data Documentation on Geologic and Hydrologic Lab Testing. SAND--2024-07526, 2429952 https://www.osti.gov/servlets/purl/2429952/https://doi.org/10.2172/2429952 (2024).

  21. Zyvoloski, G. A., Robinson, B. A., Dash, Z. V. Trease, L. L. Models and Methods Summary for the FEHM Application. 74 (1999).

  22. Zyvoloski, G. A., Robinson, B. A., Dash, Z. V., Chu, S. Miller, T. A. FEHM: Finite Element Heat and Mass Transfer Code. [Software] GitHub (2017).

  23. Zyvoloski, G. A. et al. Software users manual (UM) for the FEHM application version 3.1-3X. (2021).

  24. Bourret, S. M., Kwicklis, E. M., Miller, T. A. & Stauffer, P. H. Evaluating the importance of barometric pumping for subsurface gas transport near an underground nuclear test site. Vadose Zone J. 18, 1–17 (2019).

    Google Scholar 

  25. Bourret, S. M., Kwicklis, E. M., Harp, D. R., Ortiz, J. P. & Stauffer, P. H. Beyond Barnwell: Applying lessons learned from the Barnwell site to other historic underground nuclear tests at Pahute Mesa to understand radioactive gas-seepage observations. J. Environ. Radioact. 222, 1–14 (2020).

    Google Scholar 

  26. Jordan, A. B. et al. Uncertainty in prediction of radionuclide gas migration from underground nuclear explosions. Vadose Zone J. 13, 1–13 (2014).

    Google Scholar 

  27. Jordan, A. B., Stauffer, P. H., Knight, E. E., Rougier, E. & Anderson, D. N. [SI] radionuclide gas transport through nuclear explosion-generated fracture networks. Nat. Sci. Rep. 5, 1–10 (2015).

    Google Scholar 

  28. Neeper, D. A. & Stauffer, P. H. Transport by oscillatory flow in soils with rate-limited mass transfer: 2. Field Experiment. Vadose Zone J. 11, 1–12 (2012).

    Google Scholar 

  29. Ortiz, J. P., Neil, C. W., Rajaram, H., Boukhalfa, H. & Stauffer, P. H. Preferential adsorption of noble gases in zeolitic tuff with variable saturation: A modeling study of counter-intuitive diffusive-adsorptive behavior. J. Environ. Radioact. 282, 107608 (2025).

    Google Scholar 

  30. LaGriT. Los Alamos Grid Toolbox. Los Alamos National Laboratory (2013).

  31. Heath, J. E., Kuhlman, K. L., Broome, S. T., Wilson, J. E. & Malama, B. Heterogeneous multiphase flow properties of volcanic rocks and implications for noble gas transport from underground nuclear explosions. Vadose Zone J. 20, e20123 (2021).

    Google Scholar 

  32. Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 15, 4399–4981 (2015).

    Google Scholar 

  33. Knight, E. E., Rougier, E., Lei, Z. Munjiza, A. Hybrid Optimization Software Suite. Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) (2014).

  34. Rougier, E., Knight, E. E. Swanson, E. Source Simulations and Code-Coupling and Damage. (2023).

  35. Knight, E. E., Rougier, E. Swanson, E. PE1A 2D Axisymmetric H7R Model Results. (2023).

  36. Hyun, Y. et al. Theoretical interpretation of a pronounced permeability scale effect in unsaturated fractured tuff. Water Resour. Res. 38, 1092 (2002).

    Google Scholar 

  37. Tidwell, V. C. & Wilson, J. L. Upscaling experiments conducted on a block of volcanic tuff: Results for a bimodal permeability distribution. Water Resour. Res. 35, 3375–3387 (1999).

    Google Scholar 

  38. Illman, W. A. Strong field evidence of directional permeability scale effect in fractured rock. J. Hydrol. 319, 227–236 (2006).

    Google Scholar 

  39. Vesselinov, V. V., Neuman, S. P. & Illman, W. A. Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff: 1. Methodology and borehole effects. Water Resour. Res. 37, 3001–3017 (2001).

    Google Scholar 

  40. Vesselinov, V. V., Neuman, S. P. & Illman, W. A. Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff: 2. Equivalent parameters, high-resolution stochastic imaging and scale effects. Water Resour. Res. 37, 3019–3041 (2001).

    Google Scholar 

  41. Freyberg, D. L. A natural gradient experiment on solute transport in a sand aquifer: 2. Spatial moments and the advection and dispersion of nonreactive tracers. Water Resour. Res. 22, 2031–2046 (1986).

    Google Scholar 

  42. Gelhar, L. W., Welty, C. & Rehfeldt, K. R. A critical review of data on field-scale dispersion in aquifers. Water Resour. Res. 28, 1955–1974 (1992).

    Google Scholar 

  43. Gelhar, L. W. & Axness, C. L. Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour. Res. 19, 161–180 (1983).

    Google Scholar 

  44. Herr, M., Schäfer, G. & Spitz, K. Experimental studies of mass transport in porous media with local heterogeneities. J. Contam. Hydrol. 4, 127–137 (1989).

    Google Scholar 

  45. Hess, K. M., Wolf, S. H. & Celia, M. A. Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 3. Hydraulic conductivity variability and calculated macrodispersivities. Water Resour. Res. 28, 2011–2027 (1992).

    Google Scholar 

  46. Mackay, D. M., Freyberg, D. L., Roberts, P. V. & Cherry, J. A. A natural gradient experiment on solute transport in a sand aquifer: 1. Approach and Overview of Plume Movement. Water Resour. Res. 22, 2017–2029 (1986).

    Google Scholar 

  47. Wilson, J. L. & Gelhar, L. W. Analysis of longitudinal dispersion in unsaturated flow: 1. The analytical method. Water Resour. Res. 17, 122–130 (1981).

    Google Scholar 

  48. Feldman, J. et al. Effects of natural zeolites on field-scale geologic noble gas transport. J. Environ. Radioact. 220–221, 106279 (2020).

    Google Scholar 

  49. Greathouse, J. A., Paul, M. J., Xu, G. & Powell, M. D. Molecular dynamics simulation of pore-size effects on gas adsorption kinetics in zeolites. Clays Clay Miner. 71, 54–73 (2023).

    Google Scholar 

  50. Neil, C. W. et al. Gas diffusion through variably-water-saturated zeolitic tuff: Implications for transport following a subsurface nuclear event. J. Environ. Radioact. 250, 106905 (2022).

    Google Scholar 

  51. Paul, M. & Feldman, J. Measuring gas transport and sorption in large intact geologic specimens via the piezometric method. Transp. Porous Media 139, 1–20 (2021).

    Google Scholar 

  52. Xu, G., Paul, M. J., Yoon, H., Hearne, G. Greathouse, J. A. Measuring Multicomponent Adsorption of Tracer Gases on Natural Zeolites. https://www.osti.gov/biblio/2432207https://doi.org/10.2172/2432207 (2023).

  53. Neil, C. W. et al. Explosive byproduct gas transport through sorptive geomedia. Transp. Porous Media 152, 80 (2025).

    Google Scholar 

  54. Neil, C. W., Swager, K. C., Bourret, S. M., Ortiz, J. P. & Stauffer, P. H. Rethinking porosity-based diffusivity estimates for sorptive gas transport at variable temperatures. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.4c04048 (2024).

    Google Scholar 

  55. Paul, M. J. Transport and Sorption of Noble Gases in Porous Geological Media. The University of Texas at Austin, (2017).

  56. Paul, M. J. et al. Xenon adsorption on geological media and implications for radionuclide signatures. J. Environ. Radioact. 187, 65–72 (2018).

    Google Scholar 

  57. Powell, M. D., Paul, M. J., Xu, G., Greathouse, J. A. & Broome, S. T. Quantifying fission gas adsorption onto natural clinoptilolite in the presence of environmental air and water. J. Environ. Radioact. 287, 107709 (2025).

    Google Scholar 

  58. Chu, S. et al. lanl/FEHM: FEHM version 3.6.2. Zenodo 10.5281/zenodo.13992016 (2024).

Download references

Acknowledgments

This Low Yield Nuclear Monitoring (LYNM) research was funded by the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development (NNSA DNN R&D) by grant number LA21-V-LYNM-Containment-NDD2Fe. This manuscript has been authored with number LA-UR-25-24961 by Triad National Security under Contract with the U.S. Department of Energy, contract no. 89233218CNA000001. The authors acknowledge important interdisciplinary collaboration with scientists and engineers from LANL, LLNL, NNSS, PNNL, and SNL. The authors would like to thank the PE1-A Project Leadership, Site Construction & Field Coordination, Site Characterization, Data Collection, Subsurface Gas Transport, Cavity, and Confinement teams for provision of data used in this paper. See Appendix A for a complete list of contributors.

Funding

This Low Yield Nuclear Monitoring (LYNM) research was funded by the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development (NNSA DNN R&D) by grant number LA21-V-LYNM-Containment-NDD2Fe.

Author information

Author notes
  1. A list of authors and their affiliations appears at the end of the paper.

Authors and Affiliations

  1. Los Alamos National Laboratory, Los Alamos, NM, USA

    John P. Ortiz, Dolan D. Lucero, Esteban Rougier, Earl E. Knight, S. Michelle Bourret, Chelsea W. Neil, Hakim Boukhalfa, Shawn Otto, Philip H. Stauffer, Marcus Barela, Tyler Barnhart, Hakim Boukhalfa, Justin Cole, Musa Dea, Garrett Euler, Jose Madrid Gutierrez, Rodger Hall, Kaleb Howard, William Junor, Christopher Kwiatkowski, Ken Laintz, John Layne, Pierre-Yves Le Bas, Nick Ledoux, Shengtai Li, Gordon MacLeod, Ryan McCombe, Collin Meierbachtol, Stuart E.J. Nippress, Shawn Otto, Steve Pemberton, Bobby Quintana, Thom Rahn, Aaron Rogall, Daniel Seitz, Xuan-Min Shao, Brady Spears, Philip Stauffer, Richard Stead, Alex Tafoya, Liane Tarnecki, Greg Tubbs, Juan-Antonio Vigil, Darrin J. Wallace, Tim Walrath, Cliff Wright & Ray Yost

  2. Pacific Northwest National Laboratory, Richland, WA, USA

    Bradley G. Fritz, Thomas Alexander, Carl Britt, Jeff Burghardt, Kirsten Chojnicki, Alexander Couture, Jim Fast, Joshua Feldman, Michael Foxe, Brad Fritz, Jason Gastelum, Brian Glasgow, Dylan Hauk, Christine Johnson, Martin Keillor, Hunter Knox, James Knox, Dorothy Linneman, Erin McCann, Jennifer Mendez, Michael Moore, William Munley, Annabelle Navarro, Rose Perea, Jacob Peterson, Andrew Puyleart, Melissa Roth, Cari Seifert, Dana Sirota, Johnathan Slack, Dale Sprinkle, Chris Strickland, Chad Taguba, Aaron Van Morris, Aliya Whitehill & Lynn Wood

  3. Sandia National Laboratories, Albuquerque, NM, USA

    Miles A. Bodmer, Jason E. Heath, Kristopher L. Kuhlman, Barry L. Roberts, R. Charles Choens, Perry Barrow, Miles Bodmer, Rose Borden, Danny Bowman, Scott Broome, R. Charles Choens, Alvaro Cruz-Cabrera, Christine Downs, Stephanie Eras, Jose Falliner, James Griego, Jason Heath, Austin Holland, Matthew Ingraham, Johnny Jaramillo, Kyle Jones, Will Kibikas, Kristopher Kuhlman, Amrit Malach, Manny Montano, Taylor Myers, Joseph Pope, Matthew Powell, Barry Roberts, Eric Robey, Mark Rodriguez, Joshua Tafoya, Stephanie Teich-McGoldrick, Nichole Valdez, Marc Williams, Jennifer Wilson, Andrew Wright & Guangping Xu

  4. Lawrence Livermore National Laboratory, Livermore, CA, USA

    Souheil Ezzedine, Ethan Alger, Tarabay Antoun, Arturo Bockman, Jesse Bonner, Al Churby, Glenn Crosby, Walter Dekin, Elizabeth Dzenitis, Souheil Ezzedine, Jessie Gaylord, Andrew Glomski, Allyson Hall, Joseph Morris, Steve Myers, Amanda Price, Rebecca Rodd, Alexander Romanczuk, Oleg Vorobiev, Sonia Wharton & Xianjin Yang

  5. Neptune and Company, Los Alamos, NM, USA

    George A. Zyvoloski

  6. Atomic Weapons Establishment, Berkshire, England

    George Abbott, Graham Auld, Daniel Chester, Jon Collard, Graham Glavin, Matthew Goodwin, David Green, James Holdcroft, Ayrton Jenkins, Kieran Kleadbeater, Sheila Peacock, Ben Terry & Helen White

  7. Mission Support and Test Services, North Las Vegas, NV, USA

    Rob Mellors, Margaret Townsend & Sergio Vergara

  8. Nevada National Security Site, Las Vegas, Nevada, USA

    Adan Alvarez, Hector Banuelos, Tara Bartlett, Brian Brown, Beirl De Visser, Matthew Dietel, Nicholas Downs, Damien D’Saint Angelo, Eric Eckert, Kristine Featherston, Clayton Freimuth, Sergio Gamboa, Lisa Garner, Thomas Gascoigne, David Gessey, Scott Grover, Daniel Hardy, Michael Keogh, Jennifer Larotonda, Paul Lipkowitz, Brian Memmott, Xavier Miller, Andrew Miller, Francisco Miranda, Edgar Godoy Murillo, Mike Poskey, Carlos Rendon, Justin Reppart, Hernan Rico, George Salyer, Devon Smith, Mary Stephens, M’balia Tagoe, Rees Tatge, Ryan Thompson, Reagan Turley, Javier Villanueva, Robert White & Cleat Zeiler

  9. National Oceanic and Atmospheric Administration, Silver Spring, MD, USA

    Walter Schalk

  10. University of Nevada, Reno, NV, USA

    Benjamin Broman

  11. University of Texas at Austin, Austin, TX, USA

    Kyren Bogolub, Thomas Coleman, Derek Haas, Will Honjas, Clayton Hudson, Graham Kent, Joey Lapka, Wade Mendenhall, Gabe Plank, Agatha Podrasky, David Podrasky, Bill Savran, Dave Slater & Ken Smith

Authors
  1. John P. Ortiz
    View author publications

    Search author on:PubMed Google Scholar

  2. Dolan D. Lucero
    View author publications

    Search author on:PubMed Google Scholar

  3. Esteban Rougier
    View author publications

    Search author on:PubMed Google Scholar

  4. Earl E. Knight
    View author publications

    Search author on:PubMed Google Scholar

  5. S. Michelle Bourret
    View author publications

    Search author on:PubMed Google Scholar

  6. Bradley G. Fritz
    View author publications

    Search author on:PubMed Google Scholar

  7. Miles A. Bodmer
    View author publications

    Search author on:PubMed Google Scholar

  8. Jason E. Heath
    View author publications

    Search author on:PubMed Google Scholar

  9. Chelsea W. Neil
    View author publications

    Search author on:PubMed Google Scholar

  10. Hakim Boukhalfa
    View author publications

    Search author on:PubMed Google Scholar

  11. Kristopher L. Kuhlman
    View author publications

    Search author on:PubMed Google Scholar

  12. Shawn Otto
    View author publications

    Search author on:PubMed Google Scholar

  13. Souheil Ezzedine
    View author publications

    Search author on:PubMed Google Scholar

  14. Barry L. Roberts
    View author publications

    Search author on:PubMed Google Scholar

  15. R. Charles Choens
    View author publications

    Search author on:PubMed Google Scholar

  16. George A. Zyvoloski
    View author publications

    Search author on:PubMed Google Scholar

  17. Philip H. Stauffer
    View author publications

    Search author on:PubMed Google Scholar

Consortia

PE1 Experimental Team

  • George Abbott
  • , Thomas Alexander
  • , Ethan Alger
  • , Adan Alvarez
  • , Tarabay Antoun
  • , Graham Auld
  • , Hector Banuelos
  • , Marcus Barela
  • , Tyler Barnhart
  • , Perry Barrow
  • , Tara Bartlett
  • , Arturo Bockman
  • , Miles Bodmer
  • , Kyren Bogolub
  • , Jesse Bonner
  • , Rose Borden
  • , Hakim Boukhalfa
  • , Danny Bowman
  • , Carl Britt
  • , Benjamin Broman
  • , Scott Broome
  • , Brian Brown
  • , Jeff Burghardt
  • , Daniel Chester
  • , R. Charles Choens
  • , Kirsten Chojnicki
  • , Al Churby
  • , Justin Cole
  • , Thomas Coleman
  • , Jon Collard
  • , Alexander Couture
  • , Glenn Crosby
  • , Alvaro Cruz-Cabrera
  • , Musa Dea
  • , Walter Dekin
  • , Beirl De Visser
  • , Matthew Dietel
  • , Christine Downs
  • , Nicholas Downs
  • , Damien D’Saint Angelo
  • , Elizabeth Dzenitis
  • , Eric Eckert
  • , Stephanie Eras
  • , Garrett Euler
  • , Souheil Ezzedine
  • , Jose Falliner
  • , Jim Fast
  • , Kristine Featherston
  • , Joshua Feldman
  • , Michael Foxe
  • , Clayton Freimuth
  • , Brad Fritz
  • , Sergio Gamboa
  • , Lisa Garner
  • , Thomas Gascoigne
  • , Jason Gastelum
  • , Jessie Gaylord
  • , David Gessey
  • , Brian Glasgow
  • , Graham Glavin
  • , Andrew Glomski
  • , Matthew Goodwin
  • , David Green
  • , James Griego
  • , Scott Grover
  • , Jose Madrid Gutierrez
  • , Derek Haas
  • , Rodger Hall
  • , Allyson Hall
  • , Daniel Hardy
  • , Dylan Hauk
  • , Jason Heath
  • , James Holdcroft
  • , Austin Holland
  • , Will Honjas
  • , Kaleb Howard
  • , Clayton Hudson
  • , Matthew Ingraham
  • , Johnny Jaramillo
  • , Ayrton Jenkins
  • , Christine Johnson
  • , Kyle Jones
  • , William Junor
  • , Martin Keillor
  • , Graham Kent
  • , Michael Keogh
  • , Will Kibikas
  • , Kieran Kleadbeater
  • , Hunter Knox
  • , James Knox
  • , Kristopher Kuhlman
  • , Christopher Kwiatkowski
  • , Ken Laintz
  • , Joey Lapka
  • , Jennifer Larotonda
  • , John Layne
  • , Pierre-Yves Le Bas
  • , Nick Ledoux
  • , Shengtai Li
  • , Dorothy Linneman
  • , Paul Lipkowitz
  • , Gordon MacLeod
  • , Amrit Malach
  • , Erin McCann
  • , Ryan McCombe
  • , Collin Meierbachtol
  • , Rob Mellors
  • , Brian Memmott
  • , Wade Mendenhall
  • , Jennifer Mendez
  • , Xavier Miller
  • , Andrew Miller
  • , Francisco Miranda
  • , Manny Montano
  • , Michael Moore
  • , Joseph Morris
  • , William Munley
  • , Edgar Godoy Murillo
  • , Steve Myers
  • , Taylor Myers
  • , Annabelle Navarro
  • , Stuart E.J. Nippress
  • , Shawn Otto
  • , Sheila Peacock
  • , Steve Pemberton
  • , Rose Perea
  • , Jacob Peterson
  • , Gabe Plank
  • , Agatha Podrasky
  • , David Podrasky
  • , Joseph Pope
  • , Mike Poskey
  • , Matthew Powell
  • , Amanda Price
  • , Andrew Puyleart
  • , Bobby Quintana
  • , Thom Rahn
  • , Carlos Rendon
  • , Justin Reppart
  • , Hernan Rico
  • , Barry Roberts
  • , Eric Robey
  • , Rebecca Rodd
  • , Mark Rodriguez
  • , Aaron Rogall
  • , Alexander Romanczuk
  • , Melissa Roth
  • , George Salyer
  • , Bill Savran
  • , Walter Schalk
  • , Cari Seifert
  • , Daniel Seitz
  • , Xuan-Min Shao
  • , Dana Sirota
  • , Johnathan Slack
  • , Dave Slater
  • , Ken Smith
  • , Devon Smith
  • , Brady Spears
  • , Dale Sprinkle
  • , Philip Stauffer
  • , Richard Stead
  • , Mary Stephens
  • , Chris Strickland
  • , Alex Tafoya
  • , Joshua Tafoya
  • , M’balia Tagoe
  • , Chad Taguba
  • , Liane Tarnecki
  • , Rees Tatge
  • , Stephanie Teich-McGoldrick
  • , Ben Terry
  • , Ryan Thompson
  • , Margaret Townsend
  • , Greg Tubbs
  • , Reagan Turley
  • , Nichole Valdez
  • , Aaron Van Morris
  • , Sergio Vergara
  • , Juan-Antonio Vigil
  • , Javier Villanueva
  • , Oleg Vorobiev
  • , Darrin J. Wallace
  • , Tim Walrath
  • , Sonia Wharton
  • , Robert White
  • , Helen White
  • , Aliya Whitehill
  • , Marc Williams
  • , Jennifer Wilson
  • , Lynn Wood
  • , Cliff Wright
  • , Andrew Wright
  • , Guangping Xu
  • , Xianjin Yang
  • , Ray Yost
  •  & Cleat Zeiler

Contributions

Hydrologic field and laboratory experiments were performed by B.G.F., J.E.H., M.A.B., K.L.K., H.B., S.O., S.E., B.L.R. R.C.C. and PE1 Experimental Team. Conceptualization of the flow and transport study was designed by J.P.O, D.D.L., P.H.S, and S.M.B. Numerical models were designed by J.P.O, D.D.L., and P.H.S. J.P.O. wrote the main manuscript text. Data interpretation, writing and editing of the manuscript was performed by J.P.O, D.D.L., D.G.F., K.L.K., S.M.B., P.H.S., C.W.N., H.B., and B.G.F. Geomechanics calculations of pore crush were performed by E.R. and E.K. Implementation of the high-pressure and -temperature fluid property tables in FEHM was performed by G.A.Z.

Corresponding author

Correspondence to John P. Ortiz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information 1.

Supplementary Information 2.

Supplementary Information 3.

Supplementary Information 4.

Supplementary Information 5.

Supplementary Information 6.

Supplementary Information 7.

Supplementary Information 8.

Supplementary Information 9.

Supplementary Information 10.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, J.P., Lucero, D.D., Rougier, E. et al. Predicting multiphase flow and tracer transport for an underground chemical explosive test. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35868-w

Download citation

  • Received: 14 July 2025

  • Accepted: 08 January 2026

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-35868-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing