Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Visible-light photocatalytic mineralization of 4-Chlorophenol over ZnO-loaded sulfonated carbonaceous bentonite: kinetic analysis, pathway elucidation, and catalyst reusability
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 January 2026

Visible-light photocatalytic mineralization of 4-Chlorophenol over ZnO-loaded sulfonated carbonaceous bentonite: kinetic analysis, pathway elucidation, and catalyst reusability

  • Zeinab M. Ahmed1,
  • Ahmed A. Allam2,
  • Mohamed I. El-Sayed1,
  • Ibrahim Mohamed Abd El-Gaied1,
  • Yasser Salama1,
  • Hassan A. Rudayni2,
  • Wail Al Zoubi3 &
  • …
  • Mostafa R. Abukhadra4 

Scientific Reports , Article number:  (2026) Cite this article

  • 1328 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemistry
  • Environmental sciences
  • Materials science
  • Nanoscience and technology

Abstract

4-Chlorophenol (4-CL) is a toxic and persistent industrial pollutant resistant to conventional treatment, making its removal from wastewater a major environmental challenge. Visible-light photocatalysis provides a clean and efficient route for its complete mineralization. This study introduces a novel ZnO-functionalized sulfonated carbonaceous bentonite (ZnO@SB) nanohybrid, designed to enhance visible-light absorption, charge separation, and surface reactivity. The composite was synthesized via controlled sulfonation of organic-rich bentonite followed by uniform ZnO nanoparticle deposition. Structural and spectroscopic analyses confirmed successful functionalization and high ZnO dispersion across the sulfonated matrix. Under visible light, ZnO@SB (0.5 g/L, pH 8) achieved 100% degradation of 4-CL (5 mg/L) in 30 min and 100% TOC removal in 60 min (complete mineralization), following pseudo-first-order kinetics (k₁ = 0.1657 min⁻¹, R² > 0.98). The quantum yield increased from 7.39 × 10⁻⁸ to 2.96 × 10⁻⁷ with higher catalyst loading. The photocatalyst retained > 90% activity after five cycles, with Zn²⁺ leaching below 0.005 mg/L, indicating excellent chemical stability. Mechanistic studies confirmed the dominant roles of superoxide (O₂•⁻) and hydroxyl (•OH) radicals in driving hydroxylation, dechlorination, and aromatic ring cleavage. The novelty of this work lies in the synergistic integration of sulfonated carbonaceous bentonite with ZnO, which simultaneously enhances adsorption, charge transfer, and visible-light response. This multifunctional hybrid provides a low-cost, stable, and highly efficient photocatalyst for scalable visible-light-driven degradation and mineralization of chlorinated phenolic pollutants.

Similar content being viewed by others

Preparation and characterization of zno/bentonite nanocomposites for enhanced photocatalytic degradation of pesticides in contaminated water

Article Open access 03 July 2025

One-pot synthesized g-C3N4/Fe3O4/CuO magnetic photocatalyst for one-pot synthesis of 2-amino-4H-benzochromenes and methylene blue photodegradation

Article Open access 21 October 2025

A novel ZnS-CdS nanocomposite as a visible active photocatalyst for degradation of synthetic and real wastewaters

Article Open access 07 February 2023

Data availability

The data will be available up on request to corresponding author.

References

  1. Dehghani, M. H. et al. Sustainable remediation technologies for removal of pesticides as organic micro-pollutants from water environments: A review. Appl. Surf. Sci. Adv. 19, 100558 (2023).

    Google Scholar 

  2. Patel, P. C., Mishra, P. K., Kashyap, J. & Awasthi, S. Cation doped approach for photodegradation of 4-chlorophenol by highly efficient solar-active NiS photocatalyst: the case of Cu²⁺ doping. J. Photochem. Photobiol A: Chem. 437, 114499 (2022).

    Google Scholar 

  3. Dai, M. et al. Rational construction of S-scheme BN/MXene/ZnIn₂S₄ heterojunction with interface engineering for efficient photocatalytic hydrogen production and Chlorophenols degradation. Sep. Purif. Technol. 309, 123004 (2022).

    Google Scholar 

  4. Taheri, E. et al. Mesoporous bimetallic S-doped nanoparticles prepared via hydrothermal method for enhanced photodegradation of 4-chlorophenol. J. Environ. Manage. 349, 119460 (2023).

    Google Scholar 

  5. Hunge, Y. M., Yadav, A. A., Kang, S. W. & Kim, H. Facile synthesis of multitasking composite of silver nanoparticle with zinc oxide for 4-nitrophenol reduction, photocatalytic hydrogen production, and 4-chlorophenol degradation. J. Alloys Compd. 928, 167133 (2022).

    Google Scholar 

  6. Lopes, C., Restivo, J., Orge, C. A., Pereira, M. F. R. & Soares, O. S. G. P. Catalytic hydrodechlorination of 4-chlorophenol: role of metal phase supports and reaction pH. J. Water Process. Eng. 67, 106240 (2024).

    Google Scholar 

  7. Mumtaz, F., Li, B., Al Shehhi, M. R., Feng, X. & Wang, K. Treatment of phenolic wastewater by hybrid technologies: A review. J. Water Process. Eng. 57, 104695 (2024).

    Google Scholar 

  8. Ayach, J. et al. Conventional versus advanced approaches for heavy-metal removal in wastewater: A filter-based perspective. Polymers 16, 1959 (2024).

    Google Scholar 

  9. Zhao, Y., Chang, C., Ji, H. & Li, Z. Challenges of petroleum-wastewater treatment and trends in advanced technologies. J. Environ. Chem. Eng. 13, 113767 (2024).

    Google Scholar 

  10. Oyetade, J. A., Machunda, R. L., Hilonga, A. & De Buysser, K. Development of ternary PANI/GO-Fe3O4@ AgNps nanocomposites for photocatalytic remediation of toxic dye effluent under energy-efficient system. Journal of Molecular Structure, 1324, p.140818. (2025).

  11. Satyam, S. & Patra, S. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon 10 (9), e29573 (2024).

  12. Nthunya, L. N. et al. Fouling, performance and cost analysis of membrane-based water desalination technologies: A critical review. J. Environ. Manage. 301, 113922 (2022).

    Google Scholar 

  13. He, L. et al. Degradation of 4-chlorophenol through in situ generation of reactive chlorine species in a Zn2CoOx electrocatalytic system. Journal of Environmental Chemical Engineering, 12(1), p.111911. (2024).

  14. Soomro, M. Y. et al. Fe/Ni bimetallic magnetic nano-alloy as an efficient photo-Fenton-like catalyst for phenol degradation. Environ. Pollut. 360, 124635 (2024).

    Google Scholar 

  15. Patil, D. J. & Grewal, H. S. Comparative study of heterogeneous activation of H2O2 and peroxymonosulfate over nanoporous ZnFe2O4 for dye degradation via batch and continuous-flow channel approach. Journal of Water Process Engineering, 75, p.108007. (2025).

  16. Naik, V. A. & Thakur, V. A. Fe₃O₄@rGO@CdS/Bi₂S₃ magnetic nanocomposite for photo-Fenton dye degradation and Cr(VI) reduction under sunlight. Inorg. Chem. Commun. 160, 111962 (2024).

    Google Scholar 

  17. Oyetade, J. A., Van Hulle, S. W., Machunda, R. L. & Hilonga, A. Development of photocatalytic semiconductors and nanocomposites with excellent optoelectronic and electrochemical properties for dye effluent remediation-A review. Materials Science in Semiconductor Processing, 184, p.108821. (2024).

  18. Zhang, Y. et al. Important role of carbon doping in photocatalytic peroxymonosulfate activation of carbon nitride for efficient 4-Chlorophenol degradation. Chemical Engineering Journal, 493, p.152482. (2024).

  19. Patil, D. J., Kumar, R. & Grewal, H. S. Multifunctional smart engineering nano magnetic materials with ultrahigh synergetic adsorption-photocatalytic performance. Surf. Interfaces. 46, 104106 (2024).

    Google Scholar 

  20. Zeng, W. et al. Recent advances in adsorption and photoreduction of Cr(VI): A review, environ. Pollut Bioavailab. 37, 2493057 (2025).

    Google Scholar 

  21. de Moraes, N. P. et al. ZnO/CeO2/carbon xerogel composites with direct Z-scheme heterojunctions: enhancing photocatalytic remediation of 4-chlorophenol under visible light. J. Rare Earths. 42 (2), 314–322 (2024).

    Google Scholar 

  22. Wang, Y. et al. Fabrication of core-shell shaped heterojunction Bi2MoO6/ln2O3 nanofibers as a highly efficient photocatalyst toward degradation of 4-chlorophenol. J. Water Process. Eng. 69, 106702 (2025).

    Google Scholar 

  23. Ghanbari, S., Fatehizadeh, A., Khiadani, M., Taheri, E. & Iqbal, H. M. N. UV/Cl₂/Br photolysis followed by adsorption for dye-laden textile wastewater. Environ. Sci. Pollut Res. 29, 39400–39409 (2022).

    Google Scholar 

  24. Md. Ahmaruzzaman, S. R. et al. Phenolic compounds in water: Toxicity, sources and sustainable removal solutions. J. Environ. Chem. Eng. 12, 112964 (2024).

    Google Scholar 

  25. Yang, X. et al. Adsorption and oxidation activity of ZnO/quartz core-shell for ibuprofen decontamination. Chem. Eng. J. 431, 134312 (2021).

    Google Scholar 

  26. Zamisa, M. K., Seadira, T. W. & Baloyi, S. J. Catalytic wet-air oxidation with pillared clay catalysts for phenol remediation. Environ. Pollut. 361, 124842 (2024).

    Google Scholar 

  27. Zaki, R. M., Jusoh, R., Chanakaewsomboon, I. & Setiabudi, H. D. Recent advances in metal oxide photocatalysts for photocatalytic degradation of organic pollutants: A review on photocatalysts modification strategies. Materials Today: Proceedings, 107, pp.59–67. (2024).

  28. Ma, Y. et al. Status and challenges of photocatalysis in environmental applications: photocatalyst deactivation. Nano Res. 18 (9), 94907750 (2025).

  29. Nawaz, A. et al. Fathi-karkan, zinc oxide nanoparticles: pathways to micropollutant adsorption, dye removal, and antibacterial actions—A study of mechanisms, challenges, and future prospects. J. Mol. Struct. 1312, 138545 (2024).

    Google Scholar 

  30. Liu, J. et al. Research progress of zinc oxide-based heterojunction photocatalysts. J. Mater. Chem. A 12, 20838–20867 (2024).

  31. Aremu, O. H., Akintayo, C. O., Naidoo, E. B., Nelana, S. M. & Ayanda, O. S. Synthesis and applications of nano-sized zinc oxide in wastewater treatment: A review. Int. J. Environ. Sci. Technol. 18, 3237–3256 (2021).

  32. Zabihi, E. et al. Fabrication of nano-decorated ZnO-fibrillar Chitosan exhibiting a superior performance as a promising replacement for conventional ZnO. Carbohydr. Polym. 274, 118639 (2021).

    Google Scholar 

  33. Dimitropoulos, M. et al. Unveiling the photocorrosion mechanism of zinc oxide photocatalyst: interplay between surface corrosion and regeneration. J. Environ. Chem. Eng. 12, 112102 (2024).

    Google Scholar 

  34. Etafo, N. O., Bamidele, M. O., Bamisaye, A. & Alli, Y. A. Revolutionizing photocatalysis: unveiling efficient alternatives to titanium(IV) oxide and zinc oxide for comprehensive environmental remediation. J. Water Process. Eng. 62, 105369 (2024).

    Google Scholar 

  35. Saad, A. M. et al. Photocatalytic degradation of malachite green dye using chitosan-supported ZnO and Ce–ZnO nano-flowers under visible light. J. Environ. Manage. 258, 110043 (2020).

    Google Scholar 

  36. Baig, A., Siddique, M. & Panchal, S. A review of visible-light-active zinc oxide photocatalysts for environmental application. Catalysts 15, 100 (2025).

    Google Scholar 

  37. Abou Zeid, S. & Leprince-Wang, Y. Advancements in ZnO-based photocatalysts for water treatment: A comprehensive review. Crystals 14, 611 (2024).

    Google Scholar 

  38. Ansari, S. A. Development and photocatalytic performance of spherical shape zinc oxide nanoparticles for environmental remediation. J. Nanoelectron Optoelectron. 20, 101–105 (2025).

    Google Scholar 

  39. Rabiei, K. Recent application of clay-based heterogeneous catalyst in organic reactions. J. Inorg. Organomet. Polym. Mater. 35, 14263–14284 (2025).

  40. Othman, S. I. et al. Characterization of green ZnO-supported Curcumin intercalated bentonite (ZnO@CU/BEN) as environmental catalysts for effective oxidation of 5-fluorouracil residuals: pathway and toxicity. J. Inorg. Organomet. Polym. Mater. 34, 4116–4132 (2024).

    Google Scholar 

  41. Zhang, B. et al. Recent advances of application of bentonite-based composites in environmental remediation. J. Environ. Manage. 362, 121341 (2024).

    Google Scholar 

  42. Arabmofrad, S. et al. Nasiri Sarvi, Preparation and characterization of surface-modified montmorillonite by cationic surfactants for adsorption purposes. J. Therm. Anal. Calorim. 148, 13803–13814 (2023).

    Google Scholar 

  43. Wasim, M. et al. Synthesis and characterization of curcumin/MMT-clay-treated bacterial cellulose as an antistatic and ultraviolet-resistive bioscaffold. J. Polym. Res. 29, 1–18 (2022).

    Google Scholar 

  44. Tong, L., Liang, T., Tian, Y., Zhang, Q. & Pan, Y. Research progress on treatment of mine wastewater by bentonite composite. Arab. J. Geosci. 15, 99 (2022). (Article ID).

    Google Scholar 

  45. Dardir, F. M., Mohamed, A. S., Abukhadra, M. R., Ahmed, E. A. & Soliman, M. F. Cosmetic and pharmaceutical qualifications of Egyptian bentonite and its suitability as drug carrier for praziquantel drug. Eur. J. Pharm. Sci. 115, 320–329 (2018).

    Google Scholar 

  46. Hassan, W. A. et al. Sulfonation of natural carbonaceous bentonite as a low-cost acidic catalyst for effective transesterification of used sunflower oil into diesel; statistical modeling and kinetic properties. ACS Omega. 6, 31260–31271 (2021).

    Google Scholar 

  47. Kang, Z., Zhao, Y. & Yang, D. Review of oil shale in-situ conversion technology. Appl. Energy. 269, 115121 (2020).

    Google Scholar 

  48. Sobhy, A., Yehia, A., Hosiny, F. E., Ibrahim, S. S. & Amin, R. Application of statistical analysis for optimizing of column flotation with pine oil for oil shale cleaning. Int. J. Coal Prep Util. 42, 2285–2298 (2022).

    Google Scholar 

  49. Refaai, M. G., Rudayni, H. A., Allam, A. A., Abukhadra, M. R. & Wahed, M. S. A. Photocatalytic Oxidation of Ammonia Using copper-mediated Phosphotungstic Acid Intercalated Sulfonated Bentonite for Sustainable Eutrophication Control: A Case Study from Lake Qarun p.122351 (Environmental Research, 2025).

  50. Ahmed, Z. M. et al. Low-temperature synthesis of a multifunctional NiO/Ni(OH)2 decorated sulfonated bentonite for sustainable and enhanced visible-light-driven degradation and mineralization of bisphenol-A in water. Mater. Today Sustain. 101301. https://doi.org/10.1016/j.mtsust.2026.101301 (2026).

  51. Genel, Y., Genel, İ. & Saka, C. Facile Preparation of sulfonated carbon particles with pomegranate peels as adsorbent for enhanced methylene blue adsorption from aqueous solutions. Biomass Convers. Biorefin. 14, 30693–30705 (2024).

    Google Scholar 

  52. Sripada, S. & Kastner, J. R. Catalytic esterification using solid acid carbon catalysts synthesized by sustainable hydrothermal and plasma sulfonation techniques. Ind. Eng. Chem. Res. 61, 3928–3940 (2022).

    Google Scholar 

  53. Aniya, V. et al. Translation of lignocellulosic waste to mesoporous solid acid catalyst and its efficacy in esterification of volatile fatty acid. Microporous Mesoporous Mater. 264, 198–207 (2018).

    Google Scholar 

  54. Alsebaii, N. M., Sun, X., Salam, M. A. & Abukhadra, M. R. Tailoring the activity of sulfonated coal catalyst during the sonication and infrared-induced transesterification of castor (Ricinus communis) oil: Synergetic, optimization, kinetics, and CI engine assessment. Ind. Crops Prod. 210, 118174 (2024).

    Google Scholar 

  55. Bayram, H., Ustunisik, G., Önal, M. & Sarıkaya, Y. Optimization of bleaching power by sulfuric acid activation of bentonite. Clay Miner. 56 (2), 148–155 (2021).

    Google Scholar 

  56. Dhar, A. K., Himu, H. A., Bhattacharjee, M., Mostufa, M. G. & Parvin, F. Insights on applications of bentonite clays for the removal of dyes and heavy metals from wastewater: a review. Environ. Sci. Pollut. Res. 30 (3), 5440–5474 (2023).

    Google Scholar 

  57. Mclaren, A., Valdes-Solis, T., Li, G. & Tsang, S. C. Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 131 (35), 12540–12541 (2009).

    Google Scholar 

  58. Huang, M. et al. Spatial separation of electrons and holes among ZnO Polar {0001} and {1010} facets for enhanced photocatalytic performance. ACS Omega. 7 (30), 26844–26852 (2022).

    Google Scholar 

  59. Isaacs, M. A. et al. Unravelling mass transport in hierarchically porous catalysts. J. Mater. Chem. A. 7 (19), 11814–11825 (2019).

    Google Scholar 

  60. Liu, B. et al. Hierarchically porous ZnO/g-C3N4 S-scheme heterojunction photocatalyst for efficient H2O2 production. Langmuir 37 (48), 14114–14124 (2021).

    Google Scholar 

  61. Akinfalabi, S. I., Rashid, U., Yunus, R. & Taufiq-Yap, Y. H. Synthesis of biodiesel from palm fatty acid distillate using sulfonated palm seed cake catalyst. Renew. Energy. 111, 611–619 (2017).

    Google Scholar 

  62. Farabi, M. A., Ibrahim, M. L., Rashid, U. & Taufiq-Yap, Y. H. Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Convers. Manage. 181, 562–570 (2019).

    Google Scholar 

  63. Konwar, L. J., Mäkelä-Arvela, P. & Mikkola, J. P. SO₃H-containing functional carbon materials: Synthesis, structure, and acid catalysis. Chem. Rev. 119, 11576–11630 (2019).

    Google Scholar 

  64. Zailan, Z., Tahir, M., Jusoh, M. & Zakaria, Z. Y. A review of sulfonic group-bearing porous carbon catalyst for biodiesel production. Renew. Energy. 175, 430–452 (2021).

    Google Scholar 

  65. Mateo, W. et al. One-step synthesis of biomass-based sulfonated carbon catalyst by direct carbonization-sulfonation for organosolv delignification. Bioresour Technol. 319, 124194 (2021).

    Google Scholar 

  66. Quintana, M. A., Solís, R. R., Blázquez, G., Calero, M. & Munoz-Batista, M. J. Sulfonic grafted graphitic-like carbon nitride for the improved photocatalytic production of benzaldehyde in water. Appl. Surf. Sci. 656, 159717 (2024).

    Google Scholar 

  67. Mustafa, F. H., Attia, H. A. A., Yahya, R., Elshaarawy, R. F. & Hassan, N. Cellulose microfibrils-embedded sulfonated polyethersulfone for efficient Zn²⁺ ion removal from aqueous effluents. Chem. Eng. Res. Des. 186, 374–386 (2022).

    Google Scholar 

  68. Singh, K. & Yadav, S. Biosynthesis of a range of ZnO nanoparticles utilising salvia Hispanica L. seed extract and evaluation of their bioactivity. Sci. Rep. 15, 4043 (2025).

    Google Scholar 

  69. Hessien, M. A., Khattab, R. M. & Sadek, H. E. H. Synthesis and characterization of ZnO, Mn3O4, and ZnMn₂O₄ spinel by a new chelation-precipitation method: magnetic and antimicrobial properties. J. Inorg. Organomet. Polym. Mater. 35, 1–20 (2024).

  70. Vassileva, P. et al. Biochars as a solution for silver removal and antimicrobial activity in aqueous systems. Appl. Sci. 15, 2796 (2025).

    Google Scholar 

  71. Mekonnen, B. Synthesis and characterization of microporous materials: Towards a versatile adsorbent and a simple model material for the study of adsorption-induced deformation in microporous media, Ph.D. thesis, Université de Pau et des Pays de l’Adour, (2025).

  72. Hijazi, N. et al. Chemical engineering of zeolites: alleviating transport limitations through hierarchical design and shaping. Chem. Soc. Rev. 54, 6335–6384 (2025).

  73. Raha, S. & Ahmaruzzaman, M. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Adv. 4 (8), 1868–1925 (2022).

    Google Scholar 

  74. Rahimzadeh, H. et al. Potential of acid-activated bentonite and SO3H-functionalized MWCNTs for biodiesel production from residual olive oil under biorefinery scheme. Frontiers in Energy Research, 6, p.137. (2018).

  75. Sasikala, S. P., Nibila, T. A., Babitha, K. B., Mohamed, A. A. P. & Solaiappan, A. Competitive photo-degradation performance of ZnO modified bentonite clay in water containing both organic and inorganic contaminants. Sustainable Environment Research, 29(1), p.1. (2019).

  76. Alshabanat, M. et al. Preparation and characterization of zno/bentonite nanocomposites for enhanced photocatalytic degradation of pesticides in contaminated water. Scientific Reports, 15(1), p.23816. (2025).

  77. Zyoud, A. H. et al. Kaolin-supported ZnO nanoparticle catalysts in self-sensitized Tetracycline photodegradation: Zero-point charge and pH effects. Appl. Clay Sci. 182, 105294 (2019).

    Google Scholar 

  78. Aadnan, I., Zegaoui, O., Mragui, E. & Esteves da Silva, J. C. G. A. and Physicochemical and photocatalytic properties under visible light of ZnO-Bentonite/Chitosan hybrid-biocompositefor water remediation. Nanomaterials, 12(1), p.102. (2021).

  79. Gebrye, A. B., Mehari, B. & Atlabachew, M. Photocatalytic performance of ZnO immobilized on bentonite for catalytic degradation of malachite green under sunlight irradiation. Hybrid. Adv. 11, 100542 (2025).

  80. Priatna, S. J., Yuliana, A., Melwita, E., Arsyad, F. S. & Mohadi, R. Removal of Methyl orange in aqueous medium using ZnO/bentonite as semiconductor by photocatalytic process. Sci. Technol. Indonesia. 9 (3), 539–545 (2024).

    Google Scholar 

  81. Wang, J. et al. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces. 4 (8), 4024–4030 (2012).

    Google Scholar 

  82. Julita, M., Shiddiq, M. & Khair, M. Determination of band gap energy of ZnO/Au nanoparticles resulting in laser ablation in liquid. Indonesian J. Chem. Res. 10 (2), 83–87 (2022).

    Google Scholar 

  83. de Amadio, M. et al. Bentonites functionalized by impregnation with TiO2, Ag, Pd and Au nanoparticles. Appl. Clay Sci. 146, 1–6 (2017).

    Google Scholar 

  84. Li, X., Simon, U., Bekheet, M. F. & Gurlo, A. Mineral-supported photocatalysts: a review of materials, mechanisms and environmental applications. Energies, 15(15), p.5607. (2022).

  85. Gao, Y. et al. Porous and ultrafine nitrogen-doped carbon nanofibers from bacterial cellulose with superior adsorption capacity for adsorption removal of low-concentration 4-chlorophenol. Chem. Eng. J. 420, 127411 (2020).

    Google Scholar 

  86. Farhan, A. M. et al. Characterization and statistical physics modeling of two coal hybridized nanostructures with two forms of polyaniline (nanofibers hydrogel and nanorods) as adsorbents for toxic 4-chlorophenol. J. Inorg. Organomet. Polym. Mater. 35, 6399–6421 (2025).

  87. Hadi, S., Taheri, E., Amin, M. M., Fatehizadeh, A. & Aminabhavi, T. M. Advanced oxidation of 4-chlorophenol via combined pulsed light and sulfate radicals methods: effect of co-existing anions. J. Environ. Manage. 291, 112595 (2021).

    Google Scholar 

  88. Abdullah, R. R., Shabeed, K. M., Alzubaydi, A. B. & Alsalhy, Q. F. Novel photocatalytic polyether Sulphone ultrafiltration membrane reinforced with oxygen-deficient tungsten oxide (WO₂.₈₉) for congo red dye removal. Chem. Eng. Res. Des. 177, 526–540 (2022).

    Google Scholar 

  89. Wang, C., Sun, R., Huang, R. & Cao, Y. A novel strategy for enhancing heterogeneous Fenton degradation of dye wastewater using natural pyrite: kinetics and mechanism. Chemosphere 272, 129833 (2021).

  90. Salam, M. A., AbuKhadra, M. R. & Mohamed, A. S. Effective oxidation of Methyl parathion pesticide in water over recycled glass-based MCM-41 decorated by green Co₃O₄ nanoparticles. Environ. Pollut. 259, 113874 (2020).

    Google Scholar 

  91. Martin, M. V., Alfano, O. M. & Satuf, M. L. Cerium-doped TiO₂ thin films: assessment of radiation absorption properties and photocatalytic reaction efficiencies in a microreactor. J. Environ. Chem. Eng. 7, 103478 (2019).

    Google Scholar 

  92. Cao, S. & Piao, L. Considerations for a more accurate evaluation method for photocatalytic water splitting. Angew Chem. Int. Ed. 59, 18312–18320 (2020).

    Google Scholar 

  93. Huda, A. et al. Comparative photocatalytic performances towards acid yellow 17 and direct blue 71 degradation using Sn₃O₄ flower-like structure. J. Phys. Conf. Ser. 1282, 012097 (2019).

    Google Scholar 

  94. Zada, A. et al. Review on the hazardous applications and photodegradation mechanisms of Chlorophenols over different photocatalysts. Environ. Res. 195, 110742 (2021).

    Google Scholar 

  95. Mostafa, D. et al. Insight into the impact of calcination on the catalytic performance of synthetic hematite nano-rods during the photo-Fenton oxidation of 4-chlorophenol toxic residuals. Surf. Interfaces 59, 105970 (2025).

  96. Rangarajan, G., Jayaseelan, A. & Farnood, R. Photocatalytic reactive oxygen species generation and their mechanisms of action in pollutant removal with biochar-supported photocatalysts: A review. J. Clean. Prod. 346, 131155 (2022).

    Google Scholar 

  97. Domínguez, J. R., Durán-Valle, C. J. & Mateos-García, G. Synthesis and characterisation of acid/basic modified adsorbents: application for Chlorophenols removal. Environ. Res. 207, 112187 (2022).

    Google Scholar 

  98. Zhuo, Q. et al. Electrocatalytic oxidation processes for treatment of halogenated organic pollutants in aqueous solution: A critical review. ACS ES&T Eng. 2, 1756–1775 (2022).

    Google Scholar 

  99. Liu, X. et al. Fenton-like system of UV/glucose-oxidase@kaolin coupled with organic green rust: UV-enhanced enzyme activity and the mechanism of UV synergistic degradation of photosensitive pollutants. Environ. Res. 247, 118257 (2024).

    Google Scholar 

  100. Yang, K., Abu-Reesh, I. M. & He, Z. Degradation of 4-chlorophenol through cooperative reductive and oxidative processes in an electrochemical system. J. Hazard. Mater. 442, 130126 (2023).

    Google Scholar 

  101. Mun, H. et al. Complete 2,4,6-trichlorophenol degradation by anaerobic sludge acclimated with 4-chlorophenol: synergetic effect of nZVI@BMPC and sodium lactate as an external nutrient. J. Hazard. Mater. 476, 135063 (2024).

    Google Scholar 

  102. Veerakumar, P. et al. Photocatalytic degradation of phenolic pollutants over palladium-tungsten trioxide nanocomposite. Chem. Eng. J. 489, 151127 (2024).

    Google Scholar 

  103. Lei, M. et al. Catalytic degradation and mineralization mechanism of 4-chlorophenol oxidized by phosphomolybdic acid/H₂O₂. Sep. Purif. Technol. 257, 117933 (2021).

    Google Scholar 

  104. Zarei, M. Ultrasonic-assisted Preparation of ZrO2/g-C3N4 nanocomposites with high visible-light photocatalytic activity for degradation of 4-chlorophenol in water. Water-Energy Nexus. 3, 135–142 (2020).

    Google Scholar 

  105. Dehdar, A., Asgari, G., Leili, M., Madrakian, T. & Seid-Mohammadi, A. Step-scheme BiVO4/WO3 heterojunction photocatalyst under visible LED light irradiation removing 4-chlorophenol in aqueous solutions. J. Environ. Manage. 297, 113338 (2021).

    Google Scholar 

  106. Gao, Q., Wang, Z., Li, J., Liu, B. & Liu, C. Facile synthesis of ternary dual Z – scheme g – C3N4/Bi2MoO6/CeO2 photocatalyst with enhanced 4–chlorophenol removal: degradation pathways and mechanism. Environ. Pollut. 315, 120436 (2022).

    Google Scholar 

  107. Al-Sharji, Z., Al-Sabahi, J., Kyaw, H. H., Myint, M. T. Z. & Al-Abri, M. Plasmon enhanced photocatalytic degradation of 4-chlorophenol using zinc oxide nanorods decorated with gold nanoparticles as supported catalysts under natural sunlight. Chem. Eng. Process. - Process. Intensif. 188, 109369 (2023).

    Google Scholar 

  108. De Sousa, J. G. M. et al. Visible light-driven ZnO/g-C3N4/carbon xerogel ternary photocatalyst with enhanced activity for 4-chlorophenol degradation. Mater. Chem. Phys. 256, 123651 (2020).

    Google Scholar 

  109. Ma, Y. et al. Synthesis of FeTiO3/TiO2 composites by a cross-linking method for enhanced photocatalytic degradation of 4-chlorophenol and dyes. Res. Chem. Intermed. 47, 997–1007. https://doi.org/10.1007/s11164-020-04312-7 (2020).

    Google Scholar 

  110. Zhang, J. et al. Carbon nanodot-modified feocl for photo-assisted Fenton reaction featuring synergistic in-situ H2O2 production and activation. Appl. Catal. B Environ. Energy. 266, 118665 (2020).

    Google Scholar 

  111. Xing, H., An, C., Wu, L. & Xu, Y. Fabrication of ZnO/Polypyrrole/Carbon nanotube nanocomposite and its application for removal of 4-Chlorophenol from wastewater. Int. J. Electrochem. Sci. 17, 220510 (2022).

    Google Scholar 

  112. Catrinescu, C., Arsene, D., Apopei, P. & Teodosiu, C. Degradation of 4-chlorophenol from wastewater through heterogeneous Fenton and photo-Fenton process, catalyzed by Al–Fe PILC. Appl. Clay Sci. 58, 96–101 (2012).

    Google Scholar 

Download references

Funding

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2602).

Author information

Authors and Affiliations

  1. Geology Department Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt

    Zeinab M. Ahmed, Mohamed I. El-Sayed, Ibrahim Mohamed Abd El-Gaied & Yasser Salama

  2. Department of Biology College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia

    Ahmed A. Allam & Hassan A. Rudayni

  3. School of Materials Science and Engineering Materials Electrochemistry Laboratory, Yeungnam University, Gyeongsan, 38541, Republic of Korea

    Wail Al Zoubi

  4. Geosciences Department College of Science, Emirates University, Al Ain, 15551, United Arab Emirates

    Mostafa R. Abukhadra

Authors
  1. Zeinab M. Ahmed
    View author publications

    Search author on:PubMed Google Scholar

  2. Ahmed A. Allam
    View author publications

    Search author on:PubMed Google Scholar

  3. Mohamed I. El-Sayed
    View author publications

    Search author on:PubMed Google Scholar

  4. Ibrahim Mohamed Abd El-Gaied
    View author publications

    Search author on:PubMed Google Scholar

  5. Yasser Salama
    View author publications

    Search author on:PubMed Google Scholar

  6. Hassan A. Rudayni
    View author publications

    Search author on:PubMed Google Scholar

  7. Wail Al Zoubi
    View author publications

    Search author on:PubMed Google Scholar

  8. Mostafa R. Abukhadra
    View author publications

    Search author on:PubMed Google Scholar

Contributions

1. ***Zeinab M. Ahmed: *** Methodology, Visualization, validation, Data curation, Formal analysis, Writing -original draft, Writing – review & editing,2. **Ahmed A. Allam: ** Methodology, Funding, Data curation, Formal analysis, Writing -original draft3. ***Mohamed I. El-Sayed*** **:** Supervision, Validation, Writing - original draft, Writing – review & editing4. ***Ibrahim Mohamed Abd El-Gaied*** **:** Supervision, Writing – review & editing5. ***Yasser Salama*** **:** Methodology, Data curation, Formal analysis, Writing -original draft6. **Hassan A. Rudayni: ** Formal analysis, methodology, Writing - original draft, Writing – review & editing7. ***Wail Al Zoubi: *** *Validation, Writing - original draft, Writing – review & editing*8. **Mostafa R. Abukhadra: ** Conceptualization, Formal analysis, supervision, Resources, Data curation, Visualization, methodology, validation, Writing - original draft, Writing – review & editing.

Corresponding author

Correspondence to Mostafa R. Abukhadra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, Z., Allam, A., El-Sayed, M. et al. Visible-light photocatalytic mineralization of 4-Chlorophenol over ZnO-loaded sulfonated carbonaceous bentonite: kinetic analysis, pathway elucidation, and catalyst reusability. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35956-x

Download citation

  • Received: 01 September 2025

  • Accepted: 09 January 2026

  • Published: 16 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-35956-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • 4-Chlorophenol
  • ZnO@SB
  • Bentonite
  • Sulfonation
  • Visible-light photocatalysis
  • Wastewater treatment
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing