Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
The Lysis cassette of jumbophage PhiKZ
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 January 2026

The Lysis cassette of jumbophage PhiKZ

  • Prasanth Manohar1,2,
  • Joshua Wan2 nAff3,
  • Gabriella Ganser2,
  • Kiersten Sharp2 &
  • …
  • Ry Young1,2 

Scientific Reports , Article number:  (2026) Cite this article

  • 809 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemistry
  • Microbiology
  • Molecular biology

Abstract

Pseudomonas jumbophage phiKZ is prominent because of the proteinaceous nuclear structure that is formed during the infection cycle, protecting the replicating phage DNA from host nucleases. Progress has been made in deciphering the molecular basis of nucleus formation and other unique aspects of phiKZ biology, but the understanding of how it causes host lysis remains minimal. Here we present bioinformatic, physiological and molecular evidence for a “lysis cassette”, the expression of which is necessary and sufficient for the temporally regulated disruption of the host envelope. This cluster contains genes for the usual components of an MGL (multigene lysis) system, including the holin, endolysin, i-spanin and o-spanin. In addition, a fifth gene in the cluster, encoding a cytoplasmic protein, was found to accelerate the timing of holin-mediated lethality when expressed in trans. Evidence is provided that suggests this lysis regulator protein interacts with the cytoplasmic domain of the phiKZ class III holin. In support of this notion, alpha-fold analysis generated a high-confidence structure of a conserved holin-lysis regulator heterodimer complex. Infections at high multiplicity resulted in slower bulk culture lysis profiles than at low multiplicity, suggesting that phiKZ might have a lysis-inhibition system.

Similar content being viewed by others

Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages

Article Open access 02 August 2024

A small bacteriophage protein determines the hierarchy over co-residential jumbo phage in Bacillus thuringiensis serovar israelensis

Article Open access 24 November 2022

Programmable antisense oligomers for phage functional genomics

Article Open access 10 September 2025

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information. Protein sequences are provided in Figure 1, also available at NC_004629.1. Primer sequences are provided in Supplemental Table 1. Protein sequences used to create multi-sequence alignment are provided in Supplemental data 2 and 3.

References

  1. Krylov, V. N. & Zhazykov, I. Z. [Pseudomonas bacteriophage phiKZ–possible model for studying the genetic control of morphogenesis]. Genetika 14, 678–685 (1978).

    Google Scholar 

  2. Mesyanzhinov, V. V. et al. The genome of bacteriophage phiKZ of Pseudomonas aeruginosa. J. Mol. Biol. 317, 1–19 (2002).

    Google Scholar 

  3. Mendoza, S. D. et al. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature 577, 244–248 (2020).

    Google Scholar 

  4. Cahill, J. & Young, R. Phage lysis: multiple genes for multiple barriers. in 33–70. https://doi.org/10.1016/bs.aivir.2018.09.003 (2019).

  5. Young, R. Phage lysis: three steps, three choices, one outcome. J. Microbiol. 52, 243–258 (2014).

    Google Scholar 

  6. Cahill, J. & Young, R. Release of Phages From Prokaryotic Cells. in Encyclopedia of Virology 501–518 https://doi.org/10.1016/B978-0-12-814515-9.00074-6 (Elsevier, 2021).

  7. Gründling, A., Manson, M. D. & Young, R. Holins kill without warning. Proc. Natl. Acad. Sci. U S A. 98, 9348–9352 (2001).

    Google Scholar 

  8. Cahill, J. et al. Spatial and temporal control of lysis by the lambda holin. mBio 15, (2024).

  9. Berry, J., Savva, C., Holzenburg, A. & Young, R. The lambda spanin components Rz and Rz1 undergo tertiary and quaternary rearrangements upon complex formation. Protein Sci. 19, 1967–1977 (2010).

    Google Scholar 

  10. Cahill, J. et al. Genetic analysis of the lambda spanins Rz and Rz1: identification of functional domains. G3 Genes|Genomes|Genetics. 7, 741–753 (2017).

    Google Scholar 

  11. Berry, J. D., Rajaure, M. & Young, R. Spanin function requires subunit homodimerization through intermolecular disulfide bonds. Mol. Microbiol. 88, 35–47 (2013).

    Google Scholar 

  12. Miroshnikov, K. A., Faizullina, N. M., Sykilinda, N. N. & Mesyanzhinov, V. V. Properties of the endolytic transglycosylase encoded by gene 144 of Pseudomonas aeruginosa bacteriophage PhiKZ. Biochem. (Mosc). 71, 300–305 (2006).

    Google Scholar 

  13. Fokine, A., Miroshnikov, K. A., Shneider, M. M., Mesyanzhinov, V. V. & Rossmann, M. G. Structure of the bacteriophage phiKZ lytic transglycosylase gp144. J. Biol. Chem. 283, 7242–7250 (2008).

    Google Scholar 

  14. Krylov, V. et al. Phage phiKZ—The First of Giants. Viruses 13, 149 (2021).

    Google Scholar 

  15. Paradis-Bleau, C. et al. Peptidoglycan lytic activity of the Pseudomonas aeruginosa phage phiKZ gp144 lytic transglycosylase. FEMS Microbiol. Lett. 266, 201–209 (2007).

  16. Chertkov, O. V. et al. Dual active site in the endolytic transglycosylase gp144 of bacteriophage PhiKZ. Acta Naturae. 9, 81–87 (2017).

    Google Scholar 

  17. Briers, Y. et al. Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages φKZ and EL. Mol. Microbiol. 65, 1334–1344 (2007).

    Google Scholar 

  18. Kongari, R. et al. Phage spanins: diversity, topological dynamics and gene convergence. BMC Bioinform. 19, 326 (2018).

    Google Scholar 

  19. Juncker, A. S. et al. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 12, 1652–1662 (2003).

    Google Scholar 

  20. Braun, V. & Wu, H. C. Chapter 14 Lipoproteins, structure, function, biosynthesis and model for protein export. in 319–341 https://doi.org/10.1016/S0167-7306(08)60417-2 (1994).

  21. Park, T., Struck, D. K., Deaton, J. F. & Young, R. Topological dynamics of holins in programmed bacterial lysis. Proceedings of the National Academy of Sciences 103, 19713–19718 (2006).

  22. Grayhack, E. J. & Roberts, J. W. The phage λ Q gene product: activity of a transcription antiterminator in vitro. Cell 30, 637–648 (1982).

    Google Scholar 

  23. Cahill, J. et al. Suppressor analysis of the fusogenic lambda Spanins. J. Virol. 91, https://doi.org/10.1128/jvi.00413-17 (2017).

  24. Chernyshov, S. V., Masulis, I. S. & Mikoulinskaia, G. V. From DNA to lytic proteins: transcription and translation of the bacteriophage T5 holin/endolysin Operon. World J. Microbiol. Biotechnol. 40, 256 (2024).

    Google Scholar 

  25. Summer, E. J. et al. Rz/Rz1 Lysis gene equivalents in phages of Gram-negative hosts. J. Mol. Biol. 373, 1098–1112 (2007).

    Google Scholar 

  26. Moussa, S. H., Lawler, J. L. & Young, R. Genetic dissection of T4 Lysis. J. Bacteriol. 196, 2201–2209 (2014).

    Google Scholar 

  27. Tran, T. A. T., Struck, D. K. & Young, R. Periplasmic domains define Holin-Antiholin interactions in T4 Lysis Inhibition. J. Bacteriol. 187, 6631–6640 (2005).

    Google Scholar 

  28. Ramanculov, E. & Young, R. Genetic analysis of the T4 holin: timing and topology. Gene 265, 25–36 (2001).

    Google Scholar 

  29. Ramanculov, E. & Young, R. An ancient player unmasked: T4 rI encodes a t -specific antiholin. Mol. Microbiol. 41, 575–583 (2001).

    Google Scholar 

  30. Young, R. Bacteriophage holins: deadly diversity. J. Mol. Microbiol. Biotechnol. 4, 21–36 (2002).

    Google Scholar 

  31. Krieger, I. V. et al. The structural basis of T4 phage lysis control: DNA as the signal for lysis inhibition. J. Mol. Biol. 432, 4623–4636 (2020).

    Google Scholar 

  32. Schwarzkopf, J. M. F., Mehner-Breitfeld, D. & Brüser, T. A dimeric holin/antiholin complex controls lysis by phage T4. Front. Microbiol. 15, 1419106 (2024).

    Google Scholar 

  33. Wang, I. N., Smith, D. L. & Young, R. Holins: the protein clocks of bacteriophage infections. Annu. Rev. Microbiol. 54, 799–825 (2000).

    Google Scholar 

  34. Bavda, V. R. & Jain, V. Deciphering the role of holin in mycobacteriophage D29 physiology. Front Microbiol 11, 883 (2020).

  35. Raab, R. et al. Mutational analysis of bacteriophage lambda lysis gene S. J. Bacteriol. 167, 1035–1042 (1986).

    Google Scholar 

  36. Reader, R. W. & Siminovitch, L. Lysis defective mutants of bacteriophage lambda: on the role of the S function in Lysis. Virology 43, 623–637 (1971).

    Google Scholar 

  37. Briers, Y., Peeters, L. M., Volckaert, G. & Lavigne, R. The Lysis cassette of bacteriophage фKMV encodes a signal-arrest-release endolysin and a Pinholin. Bacteriophage 1, 25–30 (2011).

    Google Scholar 

  38. Holt, A. et al. Phage-encoded cationic antimicrobial peptide required for Lysis. J. Bacteriol. 204, JB0021421 (2021).

    Google Scholar 

  39. Kongari, R., Snowden, J., Berry, J. D. & Young, R. Localization and regulation of the T1 unimolecular Spanin. J. Virol. 92, e00380–18 (2018).

  40. Savva, C. G. et al. Stable micron-scale holes are a general feature of canonical holins. Mol. Microbiol. 91, 57–65 (2014).

    Google Scholar 

  41. To, K. H., Dewey, J., Weaver, J., Park, T. & Young, R. Functional analysis of a class I holin, P2 Y. J. Bacteriol. 195, 1346–1355 (2013).

    Google Scholar 

  42. Pang, T., Park, T. & Young, R. Mapping the pinhole formation pathway of S21. Mol. Microbiol. 78, 710–719 (2010).

    Google Scholar 

  43. Summer, E. J. et al. Genomic and biological analysis of phage Xfas53 and related prophages of Xylella fastidiosa. J. Bacteriol. 192, 179–190 (2010).

    Google Scholar 

  44. Bläsi, U. & Young, R. Two beginnings for a single purpose: the dual-start holins in the regulation of phage Lysis. Mol. Microbiol. 21, 675–682 (1996).

    Google Scholar 

  45. Barenboim, M., Chang, C., Hajj, D., Young, R. & F. & Characterization of the dual start motif of a class II Holin gene. Mol. Microbiol. 32, 715–727 (1999).

    Google Scholar 

  46. Chan, A. et al. Bacteriophage genome-wide transposon mutagenesis. Preprint at. https://doi.org/10.1101/2025.11.23.690004 (2025).

    Google Scholar 

  47. Schmidt, C., Velleman, M. & Arber, W. Three functions of bacteriophage P1 involved in cell Lysis. J. Bacteriol. 178, 1099–1104 (1996).

    Google Scholar 

  48. Niazi, S. K. Critical assessment of AI-based protein structure prediction: fundamental challenges and future directions in drug discovery. Comput. Struct. Biotechnol. Rep. 2, 100064 (2025).

    Google Scholar 

  49. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold3. Nature 630, 493–500 (2024).

    Google Scholar 

  50. Agarwal, V. & McShan, A. C. The power and pitfalls of AlphaFold2 for structure prediction beyond rigid globular proteins. Nat. Chem. Biol. 20, 950–959 (2024).

    Google Scholar 

  51. Pleteneva, E. A. et al. Pseudolysogeny of Pseudomonas aeruginosa bacteria infected with φKZ-like bacteriophages. Russ J. Genet. 46, 20–25 (2010).

    Google Scholar 

  52. Abedon, S. T. Lysis of lysis-inhibited bacteriophage T4-infected cells. J. Bacteriol. 174, 8073–8080 (1992).

    Google Scholar 

  53. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    Google Scholar 

  54. Klotz, A., Kaczmarczyk, A. & Jenal, U. A. Synthetic Cumate-Inducible promoter for graded and homogenous gene expression in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 89, e0021123 (2023).

    Google Scholar 

  55. Carver, T., Harris, S. R., Berriman, M., Parkhill, J. & McQuillan, J. A. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28, 464–469 (2012).

    Google Scholar 

  56. Hallgren, J. et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. Preprint at. https://doi.org/10.1101/2022.04.08.487609 (2022).

    Google Scholar 

  57. Tsirigos, K. D., Peters, C., Shu, N., Käll, L. & Elofsson, A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 43, W401–W407 (2015).

    Google Scholar 

  58. Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).

    Google Scholar 

  59. Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2019).

    Google Scholar 

  60. Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025 (2022).

    Google Scholar 

  61. Simm, D., Hatje, K. & Kollmar, M. Waggawagga: comparative visualization of coiled-coil predictions and detection of stable single α-helices (SAH domains). Bioinformatics 31, 767–769 (2015).

    Google Scholar 

  62. Zhang, N. & Young, R. Complementation and characterization of the nested Rz and Rz1 reading frames in the genome of bacteriophage λ. Mol. Gen. Genet. 262, 659–667 (1999).

    Google Scholar 

  63. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462 (1997).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the funding supported by the National Institute of General Medical Sciences, grant no. R35GM136396 to R.Y. and by the Center for Phage Technology, which is jointly supported by Texas A&M AgriLife Research. We also thank Joseph Bondy-Denomy for kindly sharing phiKZ phage lysates, and the lab of Dr. Urs Jenal at the University of Basel in Switzerland for providing the cumate inducible vector pQFT.

Funding

This work was supported by funding from the National Institute of General Medical Sciences, grant no. R35GM136396 to R.Y. and by the Center for Phage Technology, which is jointly supported by Texas A&M AgriLife Research.

Author information

Author notes
  1. Joshua Wan

    Present address: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Authors and Affiliations

  1. Department of Biochemistry and Biophysics, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77843 − 2128, USA

    Prasanth Manohar & Ry Young

  2. Center for Phage Technology, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77843 − 2128, USA

    Prasanth Manohar, Joshua Wan, Gabriella Ganser, Kiersten Sharp & Ry Young

Authors
  1. Prasanth Manohar
    View author publications

    Search author on:PubMed Google Scholar

  2. Joshua Wan
    View author publications

    Search author on:PubMed Google Scholar

  3. Gabriella Ganser
    View author publications

    Search author on:PubMed Google Scholar

  4. Kiersten Sharp
    View author publications

    Search author on:PubMed Google Scholar

  5. Ry Young
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, P.M., J.W., R.Y.; Data Curation, P.M., J.W.; Formal Analysis, P.M., G.G., K.S., J.W.; Experimental works, P.M., J.W., G.G., K.S.; Investigation, P.M., J.W.; Methodology, P.M., J.W., R.Y.; Resources, P.M., R.Y.; Supervision, R.Y.; Writing – Original Draft, P.M., R.Y.; Writing – Review & Editing, P.M., R.Y.; Validation, P.M., R.Y.; Visualization, P.M.; Project Administration, P.M., R.Y.; Funding Acquisition, R.Y.

Corresponding author

Correspondence to Prasanth Manohar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manohar, P., Wan, J., Ganser, G. et al. The Lysis cassette of jumbophage PhiKZ. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36188-9

Download citation

  • Received: 12 November 2025

  • Accepted: 09 January 2026

  • Published: 20 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36188-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Jumbophage
  • Lysis genes
  • Holin
  • Spanin
  • Pseudomonas aeruginosa
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology