Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Mutual information-based hierarchical NBV decision for active semantic visual SLAM under dynamic environments
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 January 2026

Mutual information-based hierarchical NBV decision for active semantic visual SLAM under dynamic environments

  • Zhenyuan Yang1,
  • Ash Wan Yaw Sang1,
  • M. A. Viraj J. Muthugala1 &
  • …
  • Mohan Rajesh Elara1 

Scientific Reports , Article number:  (2026) Cite this article

  • 370 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Engineering
  • Mathematics and computing

Abstract

Active Simultaneous Localization and Mapping (A-SLAM) technology enables a robot to autonomously plan its movements to build a comprehensive and accurate map of its surroundings. However, most existing SLAM algorithms are not robust in dynamic environments, as moving objects can negatively impact mapping and localization accuracy, making it difficult for the robot to keep tracking and fully understand its environment. While some semantic SLAM methods can identify and exclude dynamic objects, in active SLAM, excluding features without proper path planning carries significant risks of losing track. In this work, we propose a real-time mutual information-based active SLAM approach designed to enhance robustness in dynamic environments. The proposed method not only excludes dynamic objects from the mapping process but also integrates two Next-Best-View (NBV) decision modules to improve path planning and maintain robustness. This feature allows for improved mapping efficiency and robustness to avoid losing tracking in dynamic environments. Experiments conducted in two simulated environments and one real-world scenario demonstrate that the proposed active SLAM algorithm maintains its robustness and efficiency in dynamic environments, and is deployable in real applications.

Similar content being viewed by others

Semantic SLAM system for mobile robots based on large visual model in complex environments

Article Open access 11 March 2025

Geometric constraints and semantic optimization SLAM algorithm for dynamic scenarios

Article Open access 29 August 2025

Implementation of monocular visual SLAM with ARCog-NET for aerial robot swarm indoor mapping

Article Open access 22 December 2025

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Pu, H., Luo, J., Wang, G., Huang, T. & Liu, H. Visual slam integration with semantic segmentation and deep learning: A review. IEEE Sens. J. (2023).

  2. Mur-Artal, R. & Tardós, J. D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Trans. Rob. 33, 1255–1262 (2017).

    Google Scholar 

  3. Engel, J., Schöps, T. & Cremers, D. Lsd-slam: Large-scale direct monocular slam. In European Conference on Computer Vision, 834–849 (Springer, 2014).

  4. Qin, T., Li, P. & Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Rob. 34, 1004–1020 (2018).

    Google Scholar 

  5. Placed, J. A. et al. A survey on active simultaneous localization and mapping: State of the art and new frontiers. IEEE Trans. Rob. 39, 1686–1705 (2023).

    Google Scholar 

  6. Yu, C., et al. Ds-slam: A semantic visual slam towards dynamic environments. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1168–1174 (IEEE, 2018).

  7. Bescos, B., Fácil, J. M., Civera, J. & Neira, J. Dynaslam: Tracking, mapping, and inpainting in dynamic scenes. IEEE Robot. Autom. Lett. 3, 4076–4083 (2018).

    Google Scholar 

  8. Bonetto, E., Goldschmid, P., Pabst, M., Black, M. J. & Ahmad, A. irotate: Active visual slam for omnidirectional robots. Robot. Auton. Syst. 154, 104102 (2022).

    Google Scholar 

  9. Chen, Y., Huang, S. & Fitch, R. Active slam for mobile robots with area coverage and obstacle avoidance. IEEE/ASME Trans. Mechatron. 25, 1182–1192 (2020).

    Google Scholar 

  10. Thomas, M. & Joy, A. T. Elements of Information Theory (Wiley-Interscience, XXX, 2006).

    Google Scholar 

  11. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Google Scholar 

  12. Yamauchi, B. A frontier-based approach for autonomous exploration. In Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97.’Towards New Computational Principles for Robotics and Automation’, 146–151 (IEEE, 1997).

  13. Huang, K.-C., Lian, F.-L., Chen, C.-T., Wu, C.-H. & Chen, C.-C. A novel solution with rapid voronoi-based coverage path planning in irregular environment for robotic mowing systems. Int. J. Intell. Robot. Appl. 5, 558–575 (2021).

    Google Scholar 

  14. Hu, J., Niu, H., Carrasco, J., Lennox, B. & Arvin, F. Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning. IEEE Trans. Veh. Technol. 69, 14413–14423 (2020).

    Google Scholar 

  15. Xu, Z., Deng, D. & Shimada, K. Autonomous UAV exploration of dynamic environments via incremental sampling and probabilistic roadmap. IEEE Robot. Autom. Lett. 6, 2729–2736. https://doi.org/10.1109/LRA.2021.3062008 (2021).

    Google Scholar 

  16. Kavraki, L. E., Svestka, P., Latombe, J.-C. & Overmars, M. H. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12, 566–580 (2002).

    Google Scholar 

  17. Wang, C., Zhu, D., Li, T., Meng, M.Q.-H. & De Silva, C. W. Efficient autonomous robotic exploration with semantic road map in indoor environments. IEEE Robot. Autom. Lett. 4, 2989–2996 (2019).

    Google Scholar 

  18. Glasius, R., Komoda, A. & Gielen, S. C. A biologically inspired neural net for trajectory formation and obstacle avoidance. Biol. Cybern. 74, 511–520 (1996).

    Google Scholar 

  19. Wenhao, W., Fangfang, Z., Jianbin, X., Hongnian, Y. & Yanhong, L. An improved multi-robot coverage method in 3d unknown environment based on gbnn. In Chinese Intelligent Automation Conference, 476–483 (Springer, 2023).

  20. Wan, A. Y. S., Yi, L., Hayat, A. A., Gen, M. C. & Elara, M. R. Complete area-coverage path planner for surface cleaning in hospital settings using mobile dual-arm robot and gbnn with heuristics. Complex Intell. Syst. 1–19 (2024).

  21. Zhao, X., Wang, P., Gao, S., Yasir, M. & Islam, Q. U. Combining LSTM and plus models to predict future urban land use and land cover change: A case in Dongying City, China. Remote Sens. 15, 2370 (2023).

    Google Scholar 

  22. Kepler, M. E. & Stilwell, D. J. An approach to reduce communication for multi-agent mapping applications. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 4814–4820 (IEEE, 2020).

  23. Zhang, Z., Henderson, T., Karaman, S. & Sze, V. FSMI: Fast computation of Shannon mutual information for information-theoretic mapping. Int. J. Robot. Res. 39, 1155–1177 (2020).

    Google Scholar 

  24. Zhang, R., Bong, H. M. & Beltrame, G. Active semantic mapping and pose graph spectral analysis for robot exploration. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 13787–13794 (IEEE, 2024).

  25. Asgharivaskasi, A. & Atanasov, N. Semantic octree mapping and Shannon mutual information computation for robot exploration. IEEE Trans. Rob. 39, 1910–1928 (2023).

    Google Scholar 

  26. Fredriksson, S., Saradagi, A. & Nikolakopoulos, G. Robotic exploration through semantic topometric mapping. In 2024 IEEE International Conference on Robotics and Automation (ICRA), 9404–9410 (IEEE, 2024).

  27. Tao, Y., Liu, X., Spasojevic, I., Agarwal, S. & Kumar, V. 3d active metric-semantic slam. IEEE Robot. Autom. Lett. 9, 2989–2996 (2024).

    Google Scholar 

  28. Wasserman, J., Chowdhary, G., Gupta, A. & Jain, U. Exploitation-guided exploration for semantic embodied navigation. In 2024 IEEE International Conference on Robotics and Automation (ICRA), 2901–2908 (IEEE, 2024).

  29. Tian, X. et al. Same: ground-air collaborative semantic active mapping and exploration. In 2024 IEEE International Conference on Unmanned Systems (ICUS), 1923–1930 (IEEE, 2024).

  30. Yang, Z., Sachinthana, W., Samarakoon, S. B. P. & Elara, M. R. Semantic slam fusing moving constraint for dynamic objects under indoor environments. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 7900–7907 (IEEE, 2024).

  31. Islam, Q. U. et al. Advancing autonomous slam systems: Integrating yolo object detection and enhanced loop closure techniques for robust environment mapping. Robot. Auton. Syst. 185, 104871 (2025).

    Google Scholar 

  32. Islam, Q. U. et al. Advancing real-world visual slam: Integrating adaptive segmentation with dynamic object detection for enhanced environmental perception. Expert Syst. Appl. 255, 124474 (2024).

    Google Scholar 

  33. Islam, Q. U. et al. Ard-slam: Accurate and robust dynamic slam using dynamic object identification and improved multi-view geometrical approaches. Displays 82, 102654 (2024).

    Google Scholar 

  34. Islam, Q. U., Ibrahim, H., Chin, P. K., Lim, K. & Abdullah, M. Z. MVS-SLAM: Enhanced multiview geometry for improved semantic RGBD SLAM in dynamic environment.. J. Field Robot. 41, 109–130 (2024).

    Google Scholar 

  35. Ul Islam, Q., Ibrahim, H., Chin, P. K., Lim, K. & Abdullah, M. Z. FADM-SLAM: A fast and accurate dynamic intelligent motion slam for autonomous robot exploration involving movable objects. Robot. Intell. Autom. 43, 254–266 (2023).

    Google Scholar 

  36. Jocher, G., Chaurasia, A. & Qiu, J. Ultralytics YOLO (2023).

  37. Aharon, N., Orfaig, R. & Bobrovsky, B.-Z. Bot-sort: Robust associations multi-pedestrian tracking. arXiv preprint arXiv:2206.14651 (2022).

  38. Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C. & Burgard, W. OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots https://doi.org/10.1007/s10514-012-9321-0 (2013).

  39. Fox, D., Burgard, W. & Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4, 23–33 (1997).

    Google Scholar 

  40. Quigley, M. et al. ROS: an open-source robot operating system. In ICRA Workshop on Open Source Software, Vol. 3, 5 (2009).

  41. Koenig, N. & Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Vol. 3, 2149–2154 (IEEE, 2004).

  42. Steinbrink, M., Koch, P., Jung, B. & May, S. Rapidly-exploring random graph next-best view exploration for ground vehicles. In 2021 European Conference on Mobile Robots (ECMR), 1–7 (IEEE, 2021).

  43. Cao, C., Zhu, H., Choset, H. & Zhang, J. Tare: A hierarchical framework for efficiently exploring complex 3d environments. Robot. Sci. Syst. 5, 2 (2021).

    Google Scholar 

  44. Borusu, C. S. C. S. et al. Evaluating the robot inclusivity of buildings based on surface unevenness. Appl. Sci. 14, 7831 (2024).

    Google Scholar 

Download references

Funding

This research is supported by the National Robotics Programme under category National Robotics Programme 2.0, LEO 1.0: A New Class of Bed Making Robot, Award No. M25N4N2028, and also supported by A*STAR under its RIE2025 IAF-PP programme, Modular Reconfigurable Mobile Robots (MR)2, Grant No. M24N2a0039.

Author information

Authors and Affiliations

  1. Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore

    Zhenyuan Yang, Ash Wan Yaw Sang, M. A. Viraj J. Muthugala & Mohan Rajesh Elara

Authors
  1. Zhenyuan Yang
    View author publications

    Search author on:PubMed Google Scholar

  2. Ash Wan Yaw Sang
    View author publications

    Search author on:PubMed Google Scholar

  3. M. A. Viraj J. Muthugala
    View author publications

    Search author on:PubMed Google Scholar

  4. Mohan Rajesh Elara
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Zhenyuan Yang designed the algorithms, Zhenyuan Yang and Ash Wan Yaw Sang conducted the experiments, Zhenyuan Yang, Ash Wan Yaw Sang, M. A. Viraj J. Muthugala, and Mohan Rajesh Elara analysed the results. All authors reviewed the manuscript.

Corresponding author

Correspondence to M. A. Viraj J. Muthugala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Sang, A.W.Y., Muthugala, M.A.V.J. et al. Mutual information-based hierarchical NBV decision for active semantic visual SLAM under dynamic environments. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36259-x

Download citation

  • Received: 06 November 2025

  • Accepted: 12 January 2026

  • Published: 20 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36259-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Supplementary Information.
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics