Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
An integrative approach to identify novel miRNA-mRNA interaction networks in LMNA-cardiomyopathy
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 24 January 2026

An integrative approach to identify novel miRNA-mRNA interaction networks in LMNA-cardiomyopathy

  • José Córdoba-Caballero1,2,3 na1,
  • Fernando Bonet Martínez4 na1,
  • Oscar Campuzano  ORCID: orcid.org/0000-0001-5298-52765,6,7,
  • Georgia Sarquella-Brugada5,8,9,
  • Ignacio Perez de Castro10,
  • Borja Vilaplana-Martí11,
  • Pedro Seoane-Zonjic2,
  • Alipio Mangas1,4,13,
  • Juan A. G. Ranea10,12,14 na1 &
  • …
  • Rocio Toro  ORCID: orcid.org/0000-0003-3136-17761,4 na1 

Scientific Reports , Article number:  (2026) Cite this article

  • 403 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cardiology
  • Computational biology and bioinformatics
  • Molecular medicine
  • Systems biology

Abstract

Dilated cardiomyopathy caused by variants in the LMNA gene leads to malignant arrhythmogenic events, faster phenotype progression and high risk of sudden cardiac death. The pathophysiological mechanisms triggering disease progression remains poorly understood. We investigated the mRNA and miRNA transcriptome in the myocardial tissue of 50-week-old LMNAR249W mice developing dilated cardiomyopathy. We found 2148 genes and 53 miRNAs that were differentially expressed in LMNAR249W hearts. Gene ontology and pathway enrichments showed that differentially expressed genes were enriched mainly for fatty acid metabolism, muscle contraction, cell adhesion and dilated cardiomyopathy pathways. The miRNA-mRNA interactions analysis identified 2197 miRNA-target pairs with an anti-correlation between differentially expressed genes and miRNAs. Gene ontology and pathway enrichments revealed that the most significant functions of miRNA targets are mainly related to heart development, cardiac muscle contraction, fatty acid β-oxidation, cell adhesion and calcium binding pathways, among others. Our study provides new insights into the molecular mechanisms that determine dilated cardiomyopathy due to pathogenic variants in the LMNA gene, and identified several target pairs that are of potential interest for further studies.

Similar content being viewed by others

Single-cell transcriptional landscape of long non-coding RNAs orchestrating mouse heart development

Article Open access 18 December 2023

Single-molecule, full-length transcript isoform sequencing reveals disease-associated RNA isoforms in cardiomyocytes

Article Open access 09 July 2021

Integrated analysis of miRNA–mRNA interaction in pediatric dilated cardiomyopathy

Article 19 May 2021

Data availability

Data transparency is guaranteed. The datasets generated during and/or analyzed during the current study are available in the supplemental material. The original mRNA and miRNA sequencing data from mice at 50 weeks are available in the NCBI BioProject database under accession number PRJNA1232038.

References

  1. Merlo, M. et al. Persistent recovery of normal left ventricular function and dimension in idiopathic dilated cardiomyopathy during long-term follow-up: does real healing exist? J. Am. Heart Assoc. 4, e001504 (2015).

    Google Scholar 

  2. Stehlik, J. et al. The registry of the international society for heart and lung transplantation: twenty-eighth adult heart transplant Report–2011. J. Heart Lung Transpl. 30, 1078–1094 (2011).

    Google Scholar 

  3. Pinto, Y. M. et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur. Heart J. 37, 1850–1858 (2016).

    Google Scholar 

  4. Weintraub, R. G., Semsarian, C. & Macdonald, P. Dilated cardiomyopathy. Lancet 390, 400–414 (2017).

    Google Scholar 

  5. McNally, E. M. & Mestroni, L. Dilated cardiomyopathy: genetic determinants and mechanisms. Circ. Res. 121, 731–748 (2017).

    Google Scholar 

  6. Hershberger, R. E. & Morales, A. Dilated cardiomyopathy overview. In GeneReviews((R)) (eds. Adam, M. P. et al.) (Seattle, 1993).

  7. Parks, S. B. et al. Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or Familial dilated cardiomyopathy. Am. Heart J. 156, 161–169 (2008).

    Google Scholar 

  8. Tobita, T. et al. Komuro I. Genetic basis of cardiomyopathy and the genotypes involved in prognosis and left ventricular reverse remodeling. Sci. Rep. 8, 1998 (2018).

    Google Scholar 

  9. Captur, G. et al. Lamin and the heart. Heart 104, 468–479 (2018).

    Google Scholar 

  10. Malhotra, R. & Mason, P. K. Lamin A/C deficiency as a cause of Familial dilated cardiomyopathy. Curr. Opin. Cardiol. 24, 203–208 (2009).

    Google Scholar 

  11. van Rijsingen, I. A. et al. Gender-specific differences in major cardiac events and mortality in lamin A/C mutation carriers. Eur. J. Heart Fail. 15, 376–384 (2013).

    Google Scholar 

  12. Ollila, L. et al. Clinical disease presentation and ECG characteristics of LMNA mutation carriers. Open. Heart. 4, e000474 (2017).

    Google Scholar 

  13. Behnoush, A. H., Khalaji, A., Naderi, N., Ashraf, H. & von Haehling, S. ACC/AHA/HFSA 2022 and ESC 2021 guidelines on heart failure comparison. ESC Heart Fail. 10, 1531–1544 (2023).

    Google Scholar 

  14. Rosario, K. F. et al. LMNA cardiomyopathy: important considerations for the heart failure clinician. J. Cardiac Fail. (2023).

  15. Kreutzer, F. P., Fiedler, J. & Thum, T. Non-coding rnas: key players in cardiac disease. J. Physiol. 598, 2995–3003 (2020).

    Google Scholar 

  16. Gebert, L. F. R. & MacRae, I. J. Regulation of MicroRNA function in animals. Nat. Rev. Mol. Cell. Biol. 20, 21–37 (2019).

    Google Scholar 

  17. Alonso-Villa, E. et al. The role of MicroRNAs in dilated cardiomyopathy: new insights for an old entity. Int. J. Mol. Sci. 23, 256 (2022).

  18. Cordoba-Caballero, J. et al. Exploring miRNA-target gene pair detection in disease with cormit. Brief Bioinform. 2024, 25 (2024).

  19. Ben Yaou, R. et al. International retrospective natural history study of LMNA-related congenital muscular dystrophy. Brain Commun. 3, fcab075 (2021).

    Google Scholar 

  20. Gómez-Domínguez, D. C. E. et al. CRISPR/Cas9-mediated elimination of the LMNA c.745C > G pathogenic mutation enhances survival and cardiac function in LMNA-associated congenital muscular dystrophy. bioRxiv 20250213638060 (2025).

  21. Jabato, F. M. et al. Gene expression analysis method integration and co-expression module detection applied to rare glucide metabolism disorders using exphuntersuite. Sci. Rep. 11, 15062 (2021).

    Google Scholar 

  22. Ru, Y. et al. The MultiMiR R package and database: integration of microRNA-target interactions along with their disease and drug associations. Nucleic Acids Res. 42, e133 (2014).

  23. Xiao, F. et al. MiRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 37, D105–D110 (2009).

    Google Scholar 

  24. Cui, S. et al. MiRTarBase 2025: updates to the collection of experimentally validated microRNA-target interactions. Nucleic Acids Res. 53, D147–D156 (2025).

    Google Scholar 

  25. Hsu, S. D. et al. MiRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 39, D163–D169 (2011).

    Google Scholar 

  26. Chen, S. N. et al. DNA damage Response/TP53 pathway is activated and contributes to the pathogenesis of dilated cardiomyopathy associated with LMNA (Lamin A/C) mutations. Circ. Res. 124, 856–873 (2019).

    Google Scholar 

  27. Coste Pradas, J. et al. Identification of genes and pathways regulated by lamin A in heart. J. Am. Heart Association. 9, e015690 (2020).

    Google Scholar 

  28. Onoue, K. et al. Cardiomyocyte proliferative capacity is restricted in mice with Lmna mutation. Front. Cardiovasc. Med. 8, 639148 (2021).

    Google Scholar 

  29. Shao, Z. et al. RNA sequence analyses throughout the course of mouse cardiac laminopathy identify differentially expressed genes for cell cycle control and mitochondrial function. Sci. Rep. 10, 6632 (2020).

    Google Scholar 

  30. Shemer, Y. et al. Investigating LMNA-Related dilated cardiomyopathy using human induced pluripotent stem Cell-Derived cardiomyocytes. Int. J. Mol. Sci. 22, 896 (2021).

  31. Zhang, L., Liu, T., Wang, P., Shen, Y. & Huang, T. Overexpression of long noncoding RNA H19 inhibits cardiomyocyte apoptosis in neonatal rats with Hypoxic-Ischemic brain damage through the miR-149-5p/LIF/PI3K/Akt axis. Biopreserv. Biobank 19, 376–385 (2021).

    Google Scholar 

  32. Louzao-Martinez, L. et al. Characteristic adaptations of the extracellular matrix in dilated cardiomyopathy. Int. J. Cardiol. 220, 634–646 (2016).

    Google Scholar 

  33. Cai, Z. J. et al. Expression of Lmna-R225X nonsense mutation results in dilated cardiomyopathy and conduction disorders (DCM-CD) in mice: impact of exercise training. Int. J. Cardiol. 298, 85–92 (2020).

    Google Scholar 

  34. Chang, L. et al. An alpha-helix variant p.Arg156Pro in LMNA as a cause of hereditary dilated cardiomyopathy: genetics and bioinfomatics exploration. BMC Med. Genom. 16, 229 (2023).

    Google Scholar 

  35. Lyon, R. C., Zanella, F., Omens, J. H. & Sheikh, F. Mechanotransduction in cardiac hypertrophy and failure. Circ. Res. 116, 1462–1476 (2015).

    Google Scholar 

  36. Tsuru, H. et al. Pathogenic roles of cardiac fibroblasts in pediatric dilated cardiomyopathy. J. Am. Heart Assoc. 12, e029676 (2023).

    Google Scholar 

  37. Arbustini, E. et al. Autosomal dominant dilated cardiomyopathy with atrioventricular block: a lamin A/C defect-related disease. J. Am. Coll. Cardiol. 39, 981–990 (2002).

  38. Brodt, C. et al. Temporal relationship of conduction system disease and ventricular dysfunction in LMNA cardiomyopathy. J. Card. Fail. 19, 233–239 (2013).

    Google Scholar 

  39. Kleber, A. G. & Rudy, Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 84, 431–488 (2004).

    Google Scholar 

  40. De Zio, R. et al. Role of nuclear lamin A/C in the regulation of Nav1.5 channel and microtubules: lesson from the pathogenic lamin A/C variant Q517X. Front. Cell. Dev. Biol. 10, 918760 (2022).

    Google Scholar 

  41. Liu, Z. et al. A novel lamin A/C gene missense mutation (445 V > E) in immunoglobulin-like fold associated with left ventricular non-compaction. Europace 18, 617–622 (2016).

    Google Scholar 

  42. Markandeya, Y. S. et al. Inhibition of late sodium current attenuates ionic arrhythmia mechanism in ventricular myocytes expressing LaminA-N195K mutation. Heart Rhythm. 13, 2228–2236 (2016).

    Google Scholar 

  43. Olaopa, M. A. et al. Phosphorylation of lamin A/C at Serine 22 modulates Na(v) 1.5 function. Physiological Rep. 9, e15121 (2021).

    Google Scholar 

  44. Salvarani, N. et al. The K219T-Lamin mutation induces conduction defects through epigenetic Inhibition of SCN5A in human cardiac laminopathy. Nat. Commun. 10, 2267 (2019).

    Google Scholar 

  45. Macquart, C. et al. Microtubule cytoskeleton regulates connexin 43 localization and cardiac conduction in cardiomyopathy caused by mutation in A-type lamins gene. Hum. Mol. Genet. 28, 4043–4052 (2019).

    Google Scholar 

  46. Bengel, F. M., Permanetter, B., Ungerer, M., Nekolla, S. G. & Schwaiger, M. Relationship between altered sympathetic innervation, oxidative metabolism and contractile function in the cardiomyopathic human heart; a non-invasive study using positron emission tomography. Eur. Heart J. 22, 1594–1600 (2001).

    Google Scholar 

  47. Zhang, X., Shao, X., Zhang, R., Zhu, R. & Feng, R. Integrated analysis reveals the alterations that LMNA interacts with euchromatin in LMNA mutation-associated dilated cardiomyopathy. Clin. Epigenetics. 13, 3 (2021).

    Google Scholar 

  48. Austin, K. M. et al. Molecular mechanisms of arrhythmogenic cardiomyopathy. Nat. Rev. Cardiol. 16, 519–537 (2019).

    Google Scholar 

  49. Kato, K. et al. LMNA cardiomyopathy detected in Japanese arrhythmogenic right ventricular cardiomyopathy cohort. J. Cardiol. 68, 346–351 (2016).

    Google Scholar 

  50. Patel, V. et al. State of the Art review on genetics and precision medicine in arrhythmogenic cardiomyopathy. Int. J. Mol. Sci. 21, 569 (2020).

  51. Quarta, G. et al. Mutations in the lamin A/C gene mimic arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 33, 1128–1136 (2012).

    Google Scholar 

  52. Crasto, S., My, I. & Di Pasquale, E. The broad spectrum of LMNA cardiac diseases: from molecular mechanisms to clinical phenotype. Front. Physiol. 11, 761 (2020).

    Google Scholar 

  53. Corne, T. D. J. et al. Deregulation of focal adhesion formation and cytoskeletal tension due to loss of A-type lamins. Cell. Adh Migr. 11, 447–463 (2017).

    Google Scholar 

  54. Son, N. H. et al. Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J. Clin. Invest. 117, 2791–2801 (2007).

    Google Scholar 

  55. West, J. A. et al. A targeted metabolomics assay for cardiac metabolism and demonstration using a mouse model of dilated cardiomyopathy. Metabolomics 12, 59 (2016).

    Google Scholar 

  56. Tariq, Z. et al. Lamin A and microtubules collaborate to maintain nuclear morphology. Nucleus 8, 433–446 (2017).

    Google Scholar 

  57. Borin, D. et al. Altered microtubule structure, hemichannel localization and beating activity in cardiomyocytes expressing pathologic nuclear lamin A/C. Heliyon 6, e03175 (2020).

    Google Scholar 

  58. Li, M. et al. MiR-1-3p that correlates with left ventricular function of HCM can serve as a potential target and differentiate HCM from DCM. J. Transl Med. 16, 161 (2018).

    Google Scholar 

  59. Ai, Z., Fischer, A., Spray, D. C., Brown, A. M. & Fishman, G. I. Wnt-1 regulation of connexin43 in cardiac myocytes. J. Clin. Invest. 105, 161–171 (2000).

    Google Scholar 

  60. Le Dour, C. et al. Decreased WNT/beta-catenin signalling contributes to the pathogenesis of dilated cardiomyopathy caused by mutations in the lamin a/C gene. Hum. Mol. Genet. 26, 333–343 (2017).

    Google Scholar 

  61. Olson, D. J., Christian, J. L. & Moon, R. T. Effect of wnt-1 and related proteins on gap junctional communication in xenopus embryos. Science 252, 1173–1176 (1991).

    Google Scholar 

  62. Perovanovic, J. et al. Laminopathies disrupt epigenomic developmental programs and cell fate. Sci. Transl. Med. 8, 335ra58 (2016).

    Google Scholar 

  63. Singh, K. K. et al. Autophagy gene fingerprint in human ischemia and reperfusion. J. Thorac. Cardiovasc. Surg. 147, 1065–1072 (2014).

    Google Scholar 

  64. Zhou, X., Zhang, S., Zhao, Y., Wang, W. & Zhang, H. A multi-omics approach to identify molecular alterations in a mouse model of heart failure. Theranostics 12, 1607–1620 (2022).

    Google Scholar 

  65. Steinberg, C. et al. RYR2-ryanodinopathies: from calcium overload to calcium deficiency. Europace ;25, 896 (2023).

  66. Dridi, H. et al. Ryanodine receptor remodeling in cardiomyopathy and muscular dystrophy caused by lamin A/C gene mutation. Hum. Mol. Genet. 29, 3919–3934 (2021).

    Google Scholar 

  67. Zhao, B. et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22, 1962–1971 (2008).

    Google Scholar 

  68. Chen, Z., Friedrich, G. A. & Soriano, P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev. 8, 2293–2301 (1994).

    Google Scholar 

  69. Liu, R. et al. Yechoor VK and Moulik M. Tead1 is required for maintaining adult cardiomyocyte function, and its loss results in lethal dilated cardiomyopathy. JCI Insight 2, 963 (2017).

  70. Wu, Y. et al. Activation pathways and free energy landscapes of the SARS-CoV-2 Spike protein. ACS Omega. 6, 23432–23441 (2021).

    Google Scholar 

  71. Yamada, S. et al. Aburatani H and Komuro I. TEAD1 trapping by the Q353R-Lamin A/C causes dilated cardiomyopathy. Sci. Adv. 9, eade7047 (2023).

    Google Scholar 

  72. Tsutsui, H., Kinugawa, S. & Matsushima, S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol. 301, H2181–H2190 (2011).

    Google Scholar 

  73. Koyama, H. et al. Antioxidants improve the phenotypes of dilated cardiomyopathy and muscle fatigue in mitochondrial superoxide dismutase-deficient mice. Molecules 18, 1383–1393 (2013).

    Google Scholar 

  74. Almomani, R. et al. Homozygous damaging SOD2 variant causes lethal neonatal dilated cardiomyopathy. J. Med. Genet. 57, 23–30 (2020).

    Google Scholar 

  75. Sharma, S. et al. SOD2 deficiency in cardiomyocytes defines defective mitochondrial bioenergetics as a cause of lethal dilated cardiomyopathy. Redox Biol. 37, 101740 (2020).

    Google Scholar 

  76. Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of MicroRNAs. Genome Res. 19, 92–105 (2009).

    Google Scholar 

  77. Pons-Espinal, M. et al. Synergic functions of MiRNAs determine neuronal fate of adult neural stem cells. Stem cell. Rep. 8, 1046–1061 (2017).

  78. Sahu, M. & Mallick, B. Deciphering synergistic regulatory networks of MicroRNAs in hESCs and fibroblasts. Int. J. Biol. Macromol. 113, 1279–1286 (2018).

    Google Scholar 

  79. Wu, S. et al. Multiple MicroRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3’ untranslated region. Oncogene 29, 2302–2308 (2010).

    Google Scholar 

  80. Porrello, E. R. et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl. Acad. Sci. U S A. 110, 187–192 (2013).

    Google Scholar 

  81. Tijsen, A. J. et al. The microRNA-15 family inhibits the TGFbeta-pathway in the heart. Cardiovasc. Res. 104, 61–71 (2014).

  82. Jin, B., Jin, D., Zhuo, Z., Zhang, B. & Chen, K. MiR-1224-5p activates Autophagy, cell invasion and inhibits Epithelial-to-Mesenchymal transition in osteosarcoma cells by directly targeting PLK1 through PI3K/AKT/mTOR signaling pathway. Onco Targets Ther. 13, 11807–11818 (2020).

    Google Scholar 

  83. Yao, X. et al. Tumor suppressive role of miR-1224-5p in keloid proliferation, apoptosis and invasion via the TGF-beta1/Smad3 signaling pathway. Biochem. Biophys. Res. Commun. 495, 713–720 (2018).

    Google Scholar 

  84. Wang, Y. et al. Expression of Bcl-2 and MicroRNAs in cardiac tissues of patients with dilated cardiomyopathy. Mol. Med. Rep. 15, 359–365 (2017).

    Google Scholar 

  85. Xiao, Y., Zhao, J., Tuazon, J. P., Borlongan, C. V. & Yu, G. MicroRNA-133a and myocardial infarction. Cell. Transpl. 28, 831–838 (2019).

    Google Scholar 

  86. Poon, I. K., Lucas, C. D., Rossi, A. G. & Ravichandran, K. S. Apoptotic cell clearance: basic biology and therapeutic potential. Nat. Rev. Immunol. 14, 166–180 (2014).

    Google Scholar 

  87. Saddic, L. A. et al. Integrated MicroRNA and mRNA responses to acute human left ventricular ischemia. Physiol. Genomics. 47, 455–462 (2015).

    Google Scholar 

  88. Ming, S. et al. miR-139-5p inhibits isoproterenol-induced cardiac hypertrophy by targetting c-Jun. Biosci. Rep. 38, 256 (2018).

  89. Penton, A. L., Leonard, L. D. & Spinner, N. B. Notch signaling in human development and disease. Semin Cell. Dev. Biol. 23, 450–457 (2012).

    Google Scholar 

  90. Rojanasopondist, P. et al. Genetic basis of left ventricular noncompaction. Circ. Genomic Precision Med. 15, e003517 (2022).

    Google Scholar 

  91. Langa, P. et al. A perspective on Notch signalling in progression and arrhythmogenesis in Familial hypertrophic and dilated cardiomyopathies. Philos. Trans. R Soc. Lond. B Biol. Sci. 378, 20220176 (2023).

    Google Scholar 

  92. Besler, C. et al. Endomyocardial miR-133a levels correlate with myocardial inflammation, improved left ventricular function, and clinical outcome in patients with inflammatory cardiomyopathy. Eur. J. Heart Fail. 18, 1442–1451 (2016).

    Google Scholar 

  93. Liu, S. et al. Genomic analyses from Non-invasive prenatal testing reveal genetic associations, patterns of viral Infections, and Chinese population history. Cell 175, 347–359 (2018).

    Google Scholar 

  94. Lewandowski, P., Golawski, M., Baron, M., Reichman-Warmusz, E. & Wojnicz, R. A systematic review of MiRNA and CfDNA as potential biomarkers for liquid biopsy in myocarditis and inflammatory dilated cardiomyopathy. Biomolecules 2022, 12 (2022).

  95. Gerbino, A. et al. Pro-inflammatory cytokines as emerging molecular determinants in cardiolaminopathies. J. Cell. Mol. Med. 25, 10902–10915 (2021).

    Google Scholar 

  96. Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 53, D672–D677 (2025).

    Google Scholar 

  97. Kanehisa, M. Toward Understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).

    Google Scholar 

  98. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Google Scholar 

Download references

Acknowledgements

We thank the European Molecular Biology Laboratory GeneCore, Genomics Core Facility (Heidelberg, Germany) staff for processing our samples.

Funding

This work was supported by grants in the framework of the European Regional Development Fund (ERDF) Integrated Territorial Initiative (ITI0017-2019) and Foundation Progreso y Salud PEER (2020-019). This work was supported by funds from Spanish Ministry of Economy and Competitiveness PID2022-140047OB-C21.; the Institute of Health Carlos III (project IMPaCT-Data, exp. IMP/00019), co-funded by the European Union, European Regional Development Fund (ERDF, “A way to make Europe”). This work was also supported by Bosch i Aymerich Foundation. IDIBGI and Fundació Sant Joan de Dèu are a “CERCA Programme / Generalitat de Catalunya”.

Author information

Author notes
  1. José Córdoba-Caballero, Fernando Bonet Martínez, contributed equally to this work.

Authors and Affiliations

  1. Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cádiz, Spain

    José Córdoba-Caballero, Alipio Mangas & Rocio Toro

  2. Department of Molecular Biology and Biochemistry, University of Málaga, Malaga, Spain

    José Córdoba-Caballero & Pedro Seoane-Zonjic

  3. H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain

    José Córdoba-Caballero

  4. Medicine Department, Medical School of Cádiz, Cádiz University, 11003, Cádiz, Spain

    Fernando Bonet Martínez, Alipio Mangas & Rocio Toro

  5. Medical Science Department, School of Medicine, University of Girona, Girona, Spain

    Oscar Campuzano & Georgia Sarquella-Brugada

  6. Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), Salt, Spain

    Oscar Campuzano

  7. Centro Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain

    Oscar Campuzano

  8. Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital, Barcelona, Spain

    Georgia Sarquella-Brugada

  9. Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Barcelona, Spain

    Georgia Sarquella-Brugada

  10. Instituto de Investigación de Enfermedades Raras , Instituto de Salud Carlos III, Madrid, Spain

    Ignacio Perez de Castro & Juan A. G. Ranea

  11. Servicio Cirugía Experimental, Instituto Aragonés Ciencias de la Salud (IACS), Zaragoza, Spain

    Borja Vilaplana-Martí

  12. Department of Molecular Biology and Biochemistry, University of Málaga, Malaga, Spain

    Juan A. G. Ranea

  13. Internal Medicine Department, Puerta del Mar University Hospital, Cádiz, Spain

    Alipio Mangas

  14. Institute of Biomedical Research in Málaga (IBIMA Plataforma BIONAND), Malaga, Spain

    Juan A. G. Ranea

Authors
  1. José Córdoba-Caballero
    View author publications

    Search author on:PubMed Google Scholar

  2. Fernando Bonet Martínez
    View author publications

    Search author on:PubMed Google Scholar

  3. Oscar Campuzano
    View author publications

    Search author on:PubMed Google Scholar

  4. Georgia Sarquella-Brugada
    View author publications

    Search author on:PubMed Google Scholar

  5. Ignacio Perez de Castro
    View author publications

    Search author on:PubMed Google Scholar

  6. Borja Vilaplana-Martí
    View author publications

    Search author on:PubMed Google Scholar

  7. Pedro Seoane-Zonjic
    View author publications

    Search author on:PubMed Google Scholar

  8. Alipio Mangas
    View author publications

    Search author on:PubMed Google Scholar

  9. Juan A. G. Ranea
    View author publications

    Search author on:PubMed Google Scholar

  10. Rocio Toro
    View author publications

    Search author on:PubMed Google Scholar

Contributions

All authors have read and approved the submission of the manuscript. Author Contributions: RT, JAGR, OC and AM conceived the experiments; JCC, FBM and IPdCI recruited the subjects. JCC, FBM and IPdCI conducted the experiments, and IPdCI, BVM and PSZ analyzed the results. JCC, FBM, GSB, OC, and RT wrote the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Oscar Campuzano or Rocio Toro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdoba-Caballero, J., Martínez, F.B., Campuzano, O. et al. An integrative approach to identify novel miRNA-mRNA interaction networks in LMNA-cardiomyopathy. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36439-9

Download citation

  • Received: 04 February 2025

  • Accepted: 13 January 2026

  • Published: 24 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36439-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • LMNA-related dilated cardiomyopathy
  • MicroRNA
  • mRNA
  • RNA-sequencing
  • miRNA-gene interaction
  • Biological pathways
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing