Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Culturable and unculturable periodontal microorganisms in non-small cell lung cancer: an exploratory analysis
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 23 January 2026

Culturable and unculturable periodontal microorganisms in non-small cell lung cancer: an exploratory analysis

  • Melissa Chamat1,2,
  • Gloria Inés Lafaurie1,
  • Diana Marcela Castillo1,
  • Luz Amparo Gómez1,
  • Natalia Sánchez3,
  • Nathaly Andrea Delgadillo1,
  • Yormaris Castillo1,
  • David Díaz-Báez1,
  • Leonardo Rojas4,
  • Jairo Zuluaga4,
  • Oscar Arrieta5 &
  • …
  • Andrés F. Cardona3,4,5,6 

Scientific Reports , Article number:  (2026) Cite this article

  • 827 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Lung cancer
  • Microbiology
  • Molecular biology
  • Oncology

Abstract

The impact of the periodontitis-associated microbiota on lung cancer patients remains controversial and poorly explored. This study aims to characterize the periodontal microbiota in saliva and subgingival plaque of patients with non-small cell lung cancer (NSCLC) and healthy volunteers. Twenty-four individuals (12 with NSCLC and 12 healthy controls) were included, matched by age and stage of periodontitis. Periodontal clinical examination, saliva, and subgingival plaque sampling were processed using qPCR techniques to determine culturable and non-culturable periodontopathic microorganisms. Microbiological results revealed differences in saliva samples of NSCLC patients, with a significant decrease in the frequency of Treponema denticola (p = 0.019) and Eubacterium brachy (p = 0.045). Furthermore, a significant reduction was demonstrated in bacterial concentrations of Eubacterium brachy in plaque (p = 0.027) and saliva (p = 0.0076) in NSCLC patients. In contrast, Desulfobulbus oralis showed higher frequency (p = 0.05) and concentration (p = 0.038) in subgingival plaque in these patients. Porphyromonas gingivalis was not associated with NSCLC. Desulfobulbus oralis should be studied as a potential microbiota dysbiosis biomarker in NSCLC. These findings highlight the potential diagnostic value of periodontal microbiota in NSCLC.

Data availability

No/Not applicable (this manuscript does not report data generation or analysis).

References

  1. World Health Organization. Lung cancer. (accessed 10 September 2024). https://www.who.int/news-room/fact-sheets/detail/lung-cancer

  2. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Google Scholar 

  3. Bade, B. C. & Dela Cruz, C. S. Lung cancer 2020: Epidemiology, etiology, and prevention. Clin. Chest Med. 41, 1–24 (2020).

    Google Scholar 

  4. WHO global report on trends in. prevalence of tobacco use 2000–2025, fourth edition.https://www.who.int/publications/i/item/9789240039322

  5. Centers for Disease Control and Prevention. Lung Cancer Risk Factors.https://www.cdc.gov/lung-cancer/risk-factors/index.html

  6. Huang, J. & Huang, J. Microbial biomarkers for lung cancer: current Understandings and limitations. J. Clin. Med. 11, 7298 (2022).

    Google Scholar 

  7. Vernocchi, P. et al. Network analysis of gut Microbiome and metabolome to discover microbiota-linked biomarkers in patients affected by non-small cell lung cancer. Int. J. Mol. Sci. 21, 8730 (2020).

    Google Scholar 

  8. Nagasaka, M. et al. Gut Microbiome and response to checkpoint inhibitors in non-small cell lung cancer—A review. Crit. Rev. Oncol. Hematol. 145, 102841 (2020).

    Google Scholar 

  9. Jiang, X. et al. In-depth metaproteomics analysis of oral microbiome for lung cancer. Research (Wash. D. C.) 2022, 9781578 (2022).

    Google Scholar 

  10. Bultman, S. J. The Microbiome and its potential as a cancer preventive intervention. Semin Oncol. 43, 97–106 (2016).

    Google Scholar 

  11. Natalini, J. G., Singh, S. & Segal, L. N. The dynamic lung Microbiome in health and disease. Nat. Rev. Microbiol. 21, 222–235 (2023).

    Google Scholar 

  12. Chen, J. et al. The lung microbiome: a new frontier for lung and brain disease. Int. J. Mol. Sci. 24, 2170 (2023).

    Google Scholar 

  13. Bingula, R. et al. Characterisation of microbiota in saliva, Bronchoalveolar lavage fluid, non-malignant, peritumoural and tumour tissue in non-small cell lung cancer patients: a cross-sectional clinical trial. Respir Res. 21, 129 (2020).

    Google Scholar 

  14. Hosgood, H. D. et al. Variation in oral Microbiome is associated with future risk of lung cancer among never-smokers. Thorax 76, 256–263 (2021).

    Google Scholar 

  15. Zhou, Y. et al. Microbiota profiles in the saliva, cancerous tissues and its companion paracancerous tissues among Chinese patients with lung cancer. BMC Microbiol. 23, 237 (2023).

    Google Scholar 

  16. Wang, K. et al. A preliminary study of microbiota diversity in saliva and Bronchoalveolar lavage fluid from patients with primary bronchogenic carcinoma. Med. Sci. Monit. 25, 2819–2834 (2019).

    Google Scholar 

  17. Zhang, K. et al. Association of oral microbiota and periodontal disease with lung cancer: a systematic review and meta-analysis. J. Evid. Based Dent. Pract. 23, 101897 (2023).

    Google Scholar 

  18. Lafaurie, G. I. et al. Differential analysis of culturable and unculturable subgingival target microorganisms according to the stages of periodontitis. Clin. Oral Investig. 27, 3029–3043 (2023).

    Google Scholar 

  19. Schwartz, L. H. et al. RECIST 1.1-Update and clarification: from the RECIST committee. Eur. J. Cancer. 62, 132–137 (2016).

    Google Scholar 

  20. Tonetti, M. S., Greenwell, H. & Kornman, K. S. Staging and grading of periodontitis: framework and proposal of a new classification and case definition. J. Periodontol. 89 (suppl 1), S159–S172 (2018).

    Google Scholar 

  21. Boutaga, K., van Winkelhoff, A. J., Vandenbroucke-Grauls, C. M. & Savelkoul, P. H. Comparison of real-time PCR and culture for detection of Porphyromonas gingivalis in subgingival plaque samples. J. Clin. Microbiol. 41, 4950–4954 (2003).

    Google Scholar 

  22. Morillo, J. M. et al. Quantitative real-time polymerase chain reaction based on single copy gene sequence for detection of periodontal pathogens. J. Clin. Periodontol. 31, 1054–1060 (2004).

    Google Scholar 

  23. Yoshida, A. et al. TaqMan real-time polymerase chain reaction assay for the correlation of Treponema denticola numbers with the severity of periodontal disease. Oral Microbiol. Immunol. 19, 196–200 (2004).

    Google Scholar 

  24. Cross, K. L. et al. Insights into the evolution of host association through the isolation and characterization of a novel human periodontal pathobiont, desulfobulbus oralis. mBio 9, e02061–e02017 (2018).

    Google Scholar 

  25. Castillo, Y. et al. Design and validation of a quantitative polymerase chain reaction test for the identification and quantification of uncultivable bacteria associated with periodontitis. Arch. Oral Biol. 154, 105758 (2023).

    Google Scholar 

  26. Yan, X. et al. Discovery and validation of potential bacterial biomarkers for lung cancer. Am. J. Cancer Res. 5, 3111–3122 (2015).

    Google Scholar 

  27. Roy, P., Sarma, A., Kataki, A. C., Rai, A. K. & Chattopadhyay, I. Salivary microbial dysbiosis May predict lung adenocarcinoma: a pilot study. Indian J. Pathol. Microbiol. 65, 123–128 (2022).

    Google Scholar 

  28. Tsay, J. J. et al. Lower airway dysbiosis affects lung cancer progression. Cancer Discov. 11, 293–307 (2021).

    Google Scholar 

  29. Ampomah, N. K. et al. Circulating IgG antibodies to periodontal bacteria and lung cancer risk in the CLUE cohorts. JNCI Cancer Spectr. 7, pkad029 (2023).

    Google Scholar 

  30. Ren, Y. et al. Whole genome sequencing revealed Microbiome in lung adenocarcinomas presented as ground-glass nodules. Transl Lung Cancer Res. 8, 235–246 (2019).

    Google Scholar 

  31. Druzhinin, V. G. et al. Taxonomic diversity of sputum Microbiome in lung cancer patients and its relationship with chromosomal aberrations in blood lymphocytes. Sci. Rep. 10, 9681 (2020).

    Google Scholar 

  32. Liu, Y. et al. Clinical significance and prognostic value of Porphyromonas gingivalis infection in lung cancer. Transl Oncol. 14, 100972 (2021).

    Google Scholar 

  33. Olsen, I. & Yilmaz, Ö. Possible role of Porphyromonas gingivalis in orodigestive cancers. J. Oral Microbiol. 11, 1563410 (2019).

    Google Scholar 

  34. Groeger, S., Jarzina, F., Domann, E. & Meyle, J. Porphyromonas gingivalis activates NFκB and MAPK pathways in human oral epithelial cells. BMC Immunol. 18, 1 (2017).

    Google Scholar 

  35. Chen, T. et al. Breathing new insights into the role of mutant p53 in lung cancer. Oncogene 44, 115–129 (2025).

    Google Scholar 

  36. Inaba, H., Kuboniwa, M., Sugita, H., Lamont, R. J. & Amano, A. Identification of signaling pathways mediating cell cycle arrest and apoptosis induced by Porphyromonas gingivalis in human trophoblasts. Infect. Immun. 80, 2847–2857 (2012).

    Google Scholar 

  37. Horliana, A. C. et al. Dissemination of periodontal pathogens in the bloodstream after periodontal procedures: a systematic review. PLoS One. 9 (5), e98271 (2014).

    Google Scholar 

  38. Zhang, Z., Liu, D., Liu, S., Zhang, S. & Pan, Y. The role of Porphyromonas gingivalis outer membrane vesicles in periodontal disease and related systemic diseases. Front. Cell. Infect. Microbiol. 10, 585917 (2021).

    Google Scholar 

  39. Lafaurie, G. I. et al. Differences in the subgingival Microbiome according to stage of periodontitis: a comparison of two geographic regions. PLoS One. 17, e0273523 (2022).

    Google Scholar 

  40. Antezack, A., Etchecopar-Etchart, D., La Scola, B. & Monnet-Corti, V. New putative periodontopathogens and periodontal health-associated species: a systematic review and meta-analysis. J. Periodontal Res. 58, 893–906 (2023).

    Google Scholar 

  41. Zhang, W. et al. Salivary microbial dysbiosis is associated with systemic inflammatory markers and predicted oral metabolites in non-small cell lung cancer patients. J. Cancer. 10, 1651–1662 (2019).

    Google Scholar 

  42. Chew, R. J. J., Tan, K. S., Chen, T., Al-Hebshi, N. N. & Goh, C. E. Quantifying periodontitis-associated oral dysbiosis in tongue and saliva microbiomes—An integrated data analysis. J. Periodontol. 96, 55–66 (2025).

    Google Scholar 

  43. Shi, T., Wang, J., Dong, J., Hu, P. & Guo, Q. Periodontopathogens Porphyromonas gingivalis and Fusobacterium nucleatum and their roles in the progression of respiratory diseases. Pathogens 12, 1110 (2023).

    Google Scholar 

  44. Kouanda, B., Sattar, Z. & Geraghty, P. Periodontal diseases: major exacerbators of pulmonary diseases?. Pulm. Med. 2021, 4712406 (2021).

    Google Scholar 

  45. Hajishengallis, G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 15, 30–44 (2015).

    Google Scholar 

  46. Chu, S. et al. Airway Fusobacterium is associated with poor response to immunotherapy in lung cancer. Onco Targets Ther. 15, 201–213 (2022).

    Google Scholar 

  47. Kwiatkowska, A. M., Guzmán, J. A., Lafaurie, G. I., Castillo, D. M. & Cardona, A. F. Exploring the role of the oral microbiome in saliva, sputum, bronchoalveolar fluid, and lung cancer tumor tissue: A systematic review. Transl Oncol. 62, 102557. https://doi.org/10.1016/j.tranon.2025.102557 (2025).

    Google Scholar 

  48. Galvin, S., Moran, G. P. & Healy, C. M. Influence of site and smoking on malignant transformation in the oral cavity: is the Microbiome the missing link? Front. Oral Health. 4, 1166037 (2023).

    Google Scholar 

Download references

Acknowledgements

We want to acknowledge the lung cancer patients, their families, and the healthy volunteers who participated in the study.

Funding

This study is supported by the Universidad El Bosque, Bogotá, Colombia, by an internal grant for translational research (No. PCI-2022-11049).

Author information

Authors and Affiliations

  1. Unit of Oral Basic Investigation-UIBO, School of Dentistry, Universidad El Bosque, Av 9 No. 131a-2, Bogotá, Colombia

    Melissa Chamat, Gloria Inés Lafaurie, Diana Marcela Castillo, Luz Amparo Gómez, Nathaly Andrea Delgadillo, Yormaris Castillo & David Díaz-Báez

  2. Master of Dental Science Program, Faculty of Dentistry, Universidad El Bosque, Bogotá, Colombia

    Melissa Chamat

  3. Direction of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center – CTIC, Cra. 14 #169-49, Bogotá, Colombia

    Natalia Sánchez & Andrés F. Cardona

  4. Thoracic Oncology Unit, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center – CTIC, Cra. 14 #169-49, Bogotá, Colombia

    Leonardo Rojas, Jairo Zuluaga & Andrés F. Cardona

  5. Thoracic Oncology Unit, Instituto Nacional de Cancerología – INCaN, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, 14080, Ciudad de México, CDMX, Mexico

    Oscar Arrieta & Andrés F. Cardona

  6. TERA Research Group, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center – CTIC/Universidad El Bosque, Bogotá, Colombia

    Andrés F. Cardona

Authors
  1. Melissa Chamat
    View author publications

    Search author on:PubMed Google Scholar

  2. Gloria Inés Lafaurie
    View author publications

    Search author on:PubMed Google Scholar

  3. Diana Marcela Castillo
    View author publications

    Search author on:PubMed Google Scholar

  4. Luz Amparo Gómez
    View author publications

    Search author on:PubMed Google Scholar

  5. Natalia Sánchez
    View author publications

    Search author on:PubMed Google Scholar

  6. Nathaly Andrea Delgadillo
    View author publications

    Search author on:PubMed Google Scholar

  7. Yormaris Castillo
    View author publications

    Search author on:PubMed Google Scholar

  8. David Díaz-Báez
    View author publications

    Search author on:PubMed Google Scholar

  9. Leonardo Rojas
    View author publications

    Search author on:PubMed Google Scholar

  10. Jairo Zuluaga
    View author publications

    Search author on:PubMed Google Scholar

  11. Oscar Arrieta
    View author publications

    Search author on:PubMed Google Scholar

  12. Andrés F. Cardona
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: Cardona AF, Lafaurie GI, Chamat M, Castillo DM, Arrieta O. Medical records review and curation: Cardona AF, Rojas L, Zuluaga J, and Sanchez N, Arrieta O. Dental records review and curation : Lafaurie GI, Gómez LA, Chamat M. Microbiological and laboratory records: Castillo DM, Delgadillo NA. Formal analysis: Lafaurie GI, Diaz-Báez D, Castillo Y. Final manuscript writing and review: all authors.

Corresponding author

Correspondence to Gloria Inés Lafaurie.

Ethics declarations

Consent for publication

The work described has not been published previously, and it is not under consideration for publication elsewhere. The manuscript was approved by all authors and by the responsible authorities where the work was carried out.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamat, M., Lafaurie, G.I., Castillo, D.M. et al. Culturable and unculturable periodontal microorganisms in non-small cell lung cancer: an exploratory analysis. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36829-z

Download citation

  • Received: 19 February 2025

  • Accepted: 16 January 2026

  • Published: 23 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36829-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Lung neoplasms
  • Non-small cell lung cancer
  • Microbiota
  • Bacteria
  • Saliva
  • Quantitative PCR
Download PDF

Associated content

Collection

Periodontal health and disease

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer