Abstract
Expression of the cellular prion protein, PrPC, on the surface of neurons plays an important role in the pathogenesis of prion disease. We performed genome-wide CRISPR/Cas9 knockout screens in prion-infectible cells of neuronal origin (CAD5) to identify regulators of cell surface PrPC expression. We identified and validated 46 positive and 21 negative regulators of cell surface PrPC expression in undifferentiated CAD5 cells. Pathway analysis of the screening dataset showed that genes involved in the glycophosphatidylinositol (GPI) anchor and N-glycosylation biosynthetic pathways were overrepresented as positive regulators of cell surface PrPC. We also sought to determine whether the same or different genes regulate cell surface PrPC in CAD5 cells that have been differentiated to a more neuronal state and validated 41 positive and 13 negative regulators of CAD5 cell surface PrPC expression in the differentiated state. We identified 23 core genes as shared between the undifferentiated and differentiated cell states, including many positive regulators involved in GPI anchor biosynthesis. Intriguingly, unique regulators were also identified in the undifferentiated and differentiated cell states, suggesting that some mechanisms regulating cell surface PrPC expression in CAD5 cells are dependent on cell state. This list of core genes involved in regulating cell surface PrPC expression in a prion-susceptible, neuron-like cell type offers a valuable guide for future research and may help identify potential therapeutic targets for prion disease and other neurodegenerative diseases.
Similar content being viewed by others
Data availability
Raw .fastq files from all screening samples have been deposited with Mendeley Data and can be found using the following DOIs: 10.17632/jv32cvpn3r.1, 10.17632/5pfdty7zd6.1, 10.17632/p5t6d78zn8.1, 10.17632/vs9fwhbcvj.1, 10.17632/tmkn3zsjts.1, 10.17632/jb89dp34d8.1.
References
Hadlow, W. J. Scrapie and Kuru. Lancet 1959, 289–290 (1959).
Klatzo, I., Gajdusek, D. C. & Zigas, V. Pathology of Kuru. Lab. Invest. 8, 799–847 (1959).
Prusiner, S. B. Prions. Proc. Natl. Acad. Sci. U S A 95, 13363–13383 (1998).
Alper, T., Cramp, W. A., Haig, D. A. & Clarke, M. C. Does the agent of scrapie replicate without nucleic acid? Nature 214, 764–766 (1967).
Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).
Basler, K. et al. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46, 417–428 (1986).
Pan, K. M. et al. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. U S A. 90, 10962–10966 (1993).
McKinley, M. P., Bolton, D. C. & Prusiner, S. B. A protease-resistant protein is a structural component of the scrapie prion. Cell 35, 57–62 (1983).
Prusiner, S. B. et al. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35, 349–358 (1983).
Budka, H. Neuropathology of prion diseases. Br. Med. Bull. 66, 121–130 (2003).
Stahl, N., Borchelt, D. R., Hsiao, K. & Prusiner, S. B. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51, 229–240 (1987).
Endo, T., Groth, D., Prusiner, S. B. & Kobata, A. Diversity of oligosaccharide structures linked to asparagines of the scrapie prion protein. Biochemistry 28, 8380–8388 (1989).
Turk, E., Teplow, D. B., Hood, L. E. & Prusiner, S. B. Purification and properties of the cellular and scrapie hamster prion proteins. Eur. J. Biochem. 176, 21–30 (1988).
Stahl, N. et al. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32, 1991–2002 (1993).
Haraguchi, T. et al. Asparagine-linked glycosylation of the scrapie and cellular prion proteins. Arch. Biochem. Biophys. 274, 1–13 (1989).
Wopfner, F. et al. Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein. J. Mol. Biol. 289, 1163–1178 (1999).
Bendheim, P. E. et al. Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 42, 149–156 (1992).
Campana, V., Sarnataro, D. & Zurzolo, C. The highways and byways of prion protein trafficking. Trends Cell. Biol. 15, 102–111. https://doi.org/10.1016/j.tcb.2004.12.002 (2005).
Vey, M. et al. Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc. Natl. Acad. Sci. U S A. 93, 14945–14949 (1996).
Taraboulos, A. et al. Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J. Cell. Biol. 129, 121–132 (1995).
Shyng, S. L., Huber, M. T. & Harris, D. A. A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J. Biol. Chem. 268, 15922–15928 (1993).
Shyng, S. L., Heuser, J. E. & Harris, D. A. A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits. J. Cell. Biol. 125, 1239–1250 (1994).
Castle, A. R. & Westaway, D. Prion protein endoproteolysis: cleavage Sites, mechanisms and connections to prion disease. J. Neurochem. 169, e16310. https://doi.org/10.1111/jnc.16310 (2025).
Watts, J. C., Bourkas, M. E. C. & Arshad, H. The function of the cellular prion protein in health and disease. Acta Neuropathol. 135, 159–178. https://doi.org/10.1007/s00401-017-1790-y (2018).
Bueler, H. et al. Normal development and behaviour of mice lacking the neuronal cell- surface PrP protein. Nature 356, 577–582 (1992).
Bueler, H. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993).
Sakaguchi, S. et al. Accumulation of proteinase K-resistant prion protein (PrP) is restricted by the expression level of normal PrP in mice inoculated with a mouse-adapted strain of the Creutzfeldt-Jakob disease agent. J. Virol. 69, 7586–7592 (1995).
Mallucci, G. et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302, 871–874 (2003).
Richt, J. A. et al. Production of cattle lacking prion protein. Nat. Biotechnol. 25, 132–138. https://doi.org/10.1038/nbt1271 (2007).
Benestad, S. L., Austbo, L., Tranulis, M. A., Espenes, A. & Olsaker, I. Healthy goats naturally devoid of prion protein. Vet. Res. 43, 87. https://doi.org/10.1186/1297-9716-43-87 (2012).
Aguzzi, A., Lakkaraju, A. K. K. & Frontzek, K. Toward therapy of human prion diseases. Annu. Rev. Pharmacol. Toxicol. 58, 331–351. https://doi.org/10.1146/annurev-pharmtox-010617-052745 (2018).
Bueler, H. et al. High prion and PrPSc levels but delayed onset of disease in scrapie- inoculated mice heterozygous for a disrupted PrP gene. Mol. Med. 1, 19–30 (1994).
Minikel, E. V. et al. Prion protein Lowering is a disease-modifying therapy across prion disease stages, strains and endpoints. Nucleic Acids Res. 48, 10615–10631. https://doi.org/10.1093/nar/gkaa616 (2020).
Gentile, J. E. et al. Divalent siRNA for prion disease. bioRxiv (2024). https://doi.org/10.1101/2024.12.05.627039.
Chou, S.-W. Zinc Finger repressors mediate widespread PRNP; lowering in the nonhuman primate brain and profoundly extend survival in prion disease mice. bioRxiv https://doi.org/10.1101/2025.03.05.636713 (2025).
Heinzer, D. et al. Novel regulators of PrPC biosynthesis revealed by genome-wide RNA interference. PLoS Pathog. 17, e1010013. https://doi.org/10.1371/journal.ppat.1010013 (2021).
Raymond, G. J. et al. Antisense oligonucleotides extend survival of prion-infected mice. JCI Insight. 5, 256. https://doi.org/10.1172/jci.insight.131175 (2019).
Mortberg, M. A. et al. Regional variability and genotypic and pharmacodynamic effects on PrP concentration in the CNS. JCI Insight. 7, 96. https://doi.org/10.1172/jci.insight.156532 (2022).
Bender, H. et al. PrPC knockdown by liposome-siRNA-peptide complexes (LSPCs) prolongs survival and normal behavior of prion-infected mice immunotolerant to treatment. PLoS One. 14, e0219995. https://doi.org/10.1371/journal.pone.0219995 (2019).
An, M. et al. In vivo base editing extends lifespan of a humanized mouse model of prion disease. Nat. Med. 31, 1319–1328. https://doi.org/10.1038/s41591-024-03466-w (2025).
Neumann, E. N. et al. Brainwide Silencing of prion protein by AAV-mediated delivery of an engineered compact epigenetic editor. Science 384, ado7082. https://doi.org/10.1126/science.ado7082 (2024).
Citron, M. et al. Mutant presenilins of alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and Transgenic mice. Nat. Med. 3, 67–72. https://doi.org/10.1038/nm0197-67 (1997).
Cleary, J. P. et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat. Neurosci. 8, 79–84. https://doi.org/10.1038/nn1372 (2005).
Lauren, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W. & Strittmatter, S. M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457, 1128–1132. https://doi.org/10.1038/nature07761 (2009).
Gimbel, D. A. et al. Memory impairment in Transgenic alzheimer mice requires cellular prion protein. J. Neurosci. 30, 6367–6374. https://doi.org/10.1523/JNEUROSCI.0395-10.2010 (2010).
Purro, S. A., Nicoll, A. J. & Collinge, J. Prion protein as a toxic acceptor of Amyloid-beta oligomers. Biol. Psychiatry. 83, 358–368. https://doi.org/10.1016/j.biopsych.2017.11.020 (2018).
Salazar, S. V. et al. Conditional deletion of Prnp rescues behavioral and synaptic deficits after disease onset in Transgenic alzheimer’s disease. J. Neurosci. 37, 9207–9221. https://doi.org/10.1523/JNEUROSCI.0722-17.2017 (2017).
Kostylev, M. A. et al. Prion-Protein-interacting Amyloid-beta oligomers of high molecular weight are tightly correlated with memory impairment in multiple alzheimer mouse models. J. Biol. Chem. 290, 17415–17438. https://doi.org/10.1074/jbc.M115.643577 (2015).
Chung, E. et al. Anti-PrPC monoclonal antibody infusion as a novel treatment for cognitive deficits in an alzheimer’s disease model mouse. BMC Neurosci. 11, 130. https://doi.org/10.1186/1471-2202-11-130 (2010).
Freir, D. B. et al. Interaction between prion protein and toxic amyloid beta assemblies can be therapeutically targeted at multiple sites. Nat. Commun. 2, 336. https://doi.org/10.1038/ncomms1341 (2011).
Klyubin, I. et al. Peripheral administration of a humanized anti-PrP antibody blocks alzheimer’s disease Abeta synaptotoxicity. J. Neurosci. 34, 6140–6145. https://doi.org/10.1523/JNEUROSCI.3526-13.2014 (2014).
Peters, C., Espinoza, M. P., Gallegos, S., Opazo, C. & Aguayo, L. G. Alzheimer’s Abeta interacts with cellular prion protein inducing neuronal membrane damage and synaptotoxicity. Neurobiol. Aging. 36, 1369–1377. https://doi.org/10.1016/j.neurobiolaging.2014.11.019 (2015).
Cox, T. O. et al. Anti-PrP(C) antibody rescues cognition and synapses in Transgenic alzheimer mice. Ann. Clin. Transl Neurol. 6, 554–574. https://doi.org/10.1002/acn3.730 (2019).
Gunther, E. C. et al. Rescue of Transgenic alzheimer’s pathophysiology by polymeric cellular prion protein antagonists. Cell. Rep. 26, 1368. https://doi.org/10.1016/j.celrep.2019.01.064 (2019).
Stoner, A. et al. Neuronal transcriptome, tau and synapse loss in Alzheimer’s knock-in mice require prion protein. Alzheimers Res. Ther. 15, 69. https://doi.org/10.1186/s13195-023-01345-z (2023).
De Cecco, E. et al. The uptake of Tau amyloid fibrils is facilitated by the cellular prion protein and hampers prion propagation in cultured cells. J. Neurochem. 155, 577–591. https://doi.org/10.1111/jnc.15040 (2020).
Corbett, G. T. et al. PrP is a central player in toxicity mediated by soluble aggregates of neurodegeneration-causing proteins. Acta Neuropathol. 139, 503–526. https://doi.org/10.1007/s00401-019-02114-9 (2020).
Vieira, T., Barros, C. A., Domingues, R. & Outeiro, T. F. PrP Meets alpha-synuclein: molecular mechanisms and implications for disease. J. Neurochem. 168, 1625–1639. https://doi.org/10.1111/jnc.15992 (2024).
Scialo, C. et al. The cellular prion protein increases the uptake and toxicity of TDP-43 fibrils. Viruses 13, 85. https://doi.org/10.3390/v13081625 (2021).
Davis, E. M. et al. Comparative haploid genetic screens reveal divergent pathways in the biogenesis and trafficking of Glycophosphatidylinositol-Anchored proteins. Cell. Rep. 11, 1727–1736. https://doi.org/10.1016/j.celrep.2015.05.026 (2015).
Pease, D. et al. Genome-wide identification of MicroRNAs regulating the human prion protein. Brain Pathol. 29, 232–244. https://doi.org/10.1111/bpa.12679 (2019).
Yin, J. A. et al. Arrayed CRISPR libraries for the genome-wide activation, deletion and Silencing of human protein-coding genes. Nat. Biomed. Eng. 9, 127–148. https://doi.org/10.1038/s41551-024-01278-4 (2025).
Mahal, S. P. et al. Prion strain discrimination in cell culture: the cell panel assay. Proc. Natl. Acad. Sci. U S A. 104, 20908–20913 (2007).
Browning, S. et al. Abrogation of complex glycosylation by swainsonine results in strain- and cell-specific Inhibition of prion replication. J. Biol. Chem. 286, 40962–40973. https://doi.org/10.1074/jbc.M111.283978 (2011).
Berry, D. B. et al. Drug resistance confounding prion therapeutics. Proc. Natl. Acad. Sci. U S A. 110, E4160–4169. https://doi.org/10.1073/pnas.1317164110 (2013).
McKinnon, C. et al. Prion-mediated neurodegeneration is associated with early impairment of the ubiquitin-proteasome system. Acta Neuropathol. 131, 411–425. https://doi.org/10.1007/s00401-015-1508-y (2016).
Bourkas, M. E. C. et al. Engineering a murine cell line for the stable propagation of hamster prions. J. Biol. Chem. 294, 4911–4923. https://doi.org/10.1074/jbc.RA118.007135 (2019).
Walia, R., Ho, C. C., Lee, C., Gilch, S. & Schatzl, H. M. Gene-edited murine cell lines for propagation of chronic wasting disease prions. Sci. Rep. 9, 11151. https://doi.org/10.1038/s41598-019-47629-z (2019).
Arshad, H. et al. A single protective polymorphism in the prion protein blocks cross-species prion replication in cultured cells. J. Neurochem. 165, 230–245. https://doi.org/10.1111/jnc.15739 (2023).
Frontzek, K. et al. A conformational switch controlling the toxicity of the prion protein. Nat. Struct. Mol. Biol. 29, 831–840. https://doi.org/10.1038/s41594-022-00814-7 (2022).
Avar, M. et al. An arrayed genome-wide perturbation screen identifies the ribonucleoprotein Hnrnpk as rate-limiting for prion propagation. EMBO J. 41, e112338. https://doi.org/10.15252/embj.2022112338 (2022).
Ali, T. et al. Oral administration of repurposed drug targeting Cyp46A1 increases survival times of prion infected mice. Acta Neuropathol. Commun. 9, 963. https://doi.org/10.1186/s40478-021-01162-1 (2021).
Shim, S. Y., Karri, S., Law, S., Schatzl, H. M. & Gilch, S. Prion infection impairs lysosomal degradation capacity by interfering with rab7 membrane attachment in neuronal cells. Sci. Rep. 6, 21658. https://doi.org/10.1038/srep21658 (2016).
Fremuntova, Z. et al. Simple 3D spheroid cell culture model for studies of prion infection. Eur. J. Neurosci. 60, 4437–4452. https://doi.org/10.1111/ejn.16444 (2024).
Fremuntova, Z. et al. Changes in cellular prion protein expression, processing and localisation during differentiation of the neuronal cell line CAD 5. Biol. Cell. 112, 1–21. https://doi.org/10.1111/boc.201900045 (2020).
Arshad, H. & Watts, J. C. Genetically engineered cellular models of prion propagation. Cell. Tissue Res. 392, 63–80. https://doi.org/10.1007/s00441-022-03630-z (2023).
Arshad, H. et al. The molecular determinants of a universal prion acceptor. PLoS Pathog. 20, e1012538. https://doi.org/10.1371/journal.ppat.1012538 (2024).
Arshad, H. et al. The aminoglycoside G418 hinders de Novo prion infection in cultured cells. J. Biol. Chem. 297, 101073. https://doi.org/10.1016/j.jbc.2021.101073 (2021).
Qi, Y., Wang, J. K., McMillian, M. & Chikaraishi, D. M. Characterization of a CNS cell line, CAD, in which morphological differentiation is initiated by serum deprivation. J. Neurosci. 17, 1217–1225 (1997).
Abdulrahman, B. A., Abdelaziz, D. H. & Schatzl, H. M. Autophagy regulates Exosomal release of prions in neuronal cells. J. Biol. Chem. 293, 8956–8968. https://doi.org/10.1074/jbc.RA117.000713 (2018).
Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554. https://doi.org/10.1186/s13059-014-0554-4 (2014).
Wang, B. et al. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat. Protoc. 14, 756–780. https://doi.org/10.1038/s41596-018-0113-7 (2019).
Kanehisa, M. Toward Understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).
Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 53, D672–D677. https://doi.org/10.1093/nar/gkae909 (2025).
Doench, J. G. et al. Optimized SgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191. https://doi.org/10.1038/nbt.3437 (2016).
DeWeirdt, P. C. et al. Genetic screens in isogenic mammalian cell lines without single cell cloning. Nat. Commun. 11, 752. https://doi.org/10.1038/s41467-020-14620-6 (2020).
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods. 11, 783–784. https://doi.org/10.1038/nmeth.3047 (2014).
Mayer, M. P. & Bukau, B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670–684. https://doi.org/10.1007/s00018-004-4464-6 (2005).
Jin, T. et al. The chaperone protein bip binds to a mutant prion protein and mediates its degradation by the proteasome. J. Biol. Chem. 275, 38699–38704 (2000).
Abrams, J. et al. Functional genomics screen identifies proteostasis targets that modulate prion protein (PrP) stability. Cell. Stress Chaperones. 26, 443–452. https://doi.org/10.1007/s12192-021-01191-8 (2021).
Shoup, D. & Priola, S. A. Grp78 destabilization of infectious prions is strain-specific and modified by multiple factors including accessory chaperones and pH. J. Biol. Chem. 300, 107346. https://doi.org/10.1016/j.jbc.2024.107346 (2024).
Shoup, D. & Priola, S. A. Chaperone-mediated disaggregation of infectious prions releases particles that seed new prion formation in a strain-specific manner. J. Biol. Chem. 301, 108062. https://doi.org/10.1016/j.jbc.2024.108062 (2025).
Chesebro, B. et al. Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308, 1435–1439 (2005).
Chesebro, B. et al. Fatal transmissible amyloid encephalopathy: a new type of prion disease associated with lack of prion protein membrane anchoring. PLoS Pathog. 6, e1000800. https://doi.org/10.1371/journal.ppat.1000800 (2010).
Stohr, J. et al. Spontaneous generation of anchorless prions in Transgenic mice. Proc. Natl. Acad. Sci. U S A. 108, 21223–21228. https://doi.org/10.1073/pnas.1117827108 (2011).
Lang, S. et al. Different effects of Sec61alpha, Sec62 and Sec63 depletion on transport of polypeptides into the Endoplasmic reticulum of mammalian cells. J. Cell Sci. 125, 1958–1969. https://doi.org/10.1242/jcs.096727 (2012).
Kim, S. J. & Hegde, R. S. Cotranslational partitioning of nascent prion protein into multiple populations at the translocation channel. Mol. Biol. Cell 13, 3775–3786. https://doi.org/10.1091/mbc.e02-05-0293 (2002).
Conti, B. J., Devaraneni, P. K., Yang, Z., David, L. L. & Skach, W. R. Cotranslational stabilization of Sec62/63 within the ER Sec61 translocon is controlled by distinct substrate-driven translocation events. Mol. Cell. 58, 269–283. https://doi.org/10.1016/j.molcel.2015.02.018 (2015).
Pobre, K. F. R., Poet, G. J. & Hendershot, L. M. The Endoplasmic reticulum (ER) chaperone bip is a master regulator of ER functions: getting by with a little help from ERdj friends. J. Biol. Chem. 294, 2098–2108. https://doi.org/10.1074/jbc.REV118.002804 (2019).
Ziska, A. et al. The signal peptide plus a cluster of positive charges in prion protein dictate chaperone-mediated Sec61 channel gating. Biol. Open. 8, 69. https://doi.org/10.1242/bio.040691 (2019).
Park, K. W. et al. The Endoplasmic reticulum chaperone GRP78/BiP modulates prion propagation in vitro and in vivo. Sci. Rep. 7, 44723. https://doi.org/10.1038/srep44723 (2017).
Matera, A. G. & Wang, Z. A day in the life of the spliceosome. Nat. Rev. Mol. Cell. Biol. 15, 108–121. https://doi.org/10.1038/nrm3742 (2014).
Maeder, C. I. et al. The THO complex coordinates transcripts for synapse development and dopamine neuron survival. Cell 174, 1436–1449 e1420. https://doi.org/10.1016/j.cell.2018.07.046 (2018).
Vonk, W. I. M. et al. Differentiation drives widespread rewiring of the neural stem cell chaperone network. Mol. Cell 78, 329–345 e329. https://doi.org/10.1016/j.molcel.2020.03.009 (2020).
Thiruvalluvan, A. et al. DNAJB6, a key factor in neuronal sensitivity to amyloidogenesis. Mol. Cell 78, 346–358 e349. https://doi.org/10.1016/j.molcel.2020.02.022 (2020).
Kimura, K. et al. Glycoproteomic analysis of the changes in protein N-glycosylation during neuronal differentiation in human-induced pluripotent stem cells and derived neuronal cells. Sci. Rep. 11, 11169. https://doi.org/10.1038/s41598-021-90102-z (2021).
Nairn, A. V. et al. Regulation of glycan structures in murine embryonic stem cells: combined transcript profiling of glycan-related genes and glycan structural analysis. J. Biol. Chem. 287, 37835–37856. https://doi.org/10.1074/jbc.M112.405233 (2012).
An, H. J. et al. Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells. Mol. Cell. Proteomics: MCP 11, M111 010660. https://doi.org/10.1074/mcp.M111.010660 (2012).
Terashima, M., Amano, M., Onodera, T., Nishimura, S. & Iwasaki, N. Quantitative glycomics monitoring of induced pluripotent- and embryonic stem cells during neuronal differentiation. Stem Cell. Res. 13, 454–464. https://doi.org/10.1016/j.scr.2014.10.006 (2014).
Cindric, A. et al. Total cell N-glycosylation is altered during differentiation of induced pluripotent stem cells to neural stem cells and is disturbed by trisomy 21. BBA Adv. 7, 100137. https://doi.org/10.1016/j.bbadva.2024.100137 (2025).
Ermonval, M., Petit, D., Le Duc, A., Kellermann, O. & Gallet, P. F. Glycosylation-related genes are variably expressed depending on the differentiation state of a bioaminergic neuronal cell line: implication for the cellular prion protein. Glycoconj. J. (2008).
Rogers, M., Taraboulos, A., Scott, M., Groth, D. & Prusiner, S. B. Intracellular accumulation of the cellular prion protein after mutagenesis of its Asn-linked glycosylation sites. Glycobiology 1, 101–109 (1990).
Gao, Z. et al. Glycan-deficient PrP stimulates VEGFR2 signaling via glycosaminoglycan. Cell. Signal. 28, 652–662. https://doi.org/10.1016/j.cellsig.2016.03.010 (2016).
Yi, C. W. et al. Glycosylation significantly inhibits the aggregation of human prion protein and decreases its cytotoxicity. Sci. Rep. 8, 12603. https://doi.org/10.1038/s41598-018-30770-6 (2018).
Cancellotti, E. et al. Altered glycosylated PrP proteins can have different neuronal trafficking in brain but do not acquire scrapie-like properties. J. Biol. Chem. 280, 42909–42918 (2005).
Wiseman, F. K. et al. The glycosylation status of PrPC is a key factor in determining transmissible spongiform encephalopathy transmission between species. J. Virol. 89, 4738–4747. https://doi.org/10.1128/JVI.02296-14 (2015).
Tuzi, N. L. et al. Host PrP glycosylation: a major factor determining the outcome of prion infection. PLoS Biol. 6, e100 (2008).
Aguilar-Calvo, P., Callender, J. A. & Sigurdson, C. J. Short and sweet: how glycans impact prion conversion, cofactor interactions, and cross-species transmission. PLoS Pathog. 17, e1009123. https://doi.org/10.1371/journal.ppat.1009123 (2021).
Grasbon-Frodl, E. et al. Loss of glycosylation associated with the T183A mutation in human prion disease. Acta Neuropathol. 108, 476–484. https://doi.org/10.1007/s00401-004-0913-4 (2004).
Cracco, L. et al. Efficient transmission of human prion diseases to a glycan-free prion protein-expressing host. Brain: J. Neurol. 147, 1539–1552. https://doi.org/10.1093/brain/awad399 (2024).
Camacho, M. V., Telling, G., Kong, Q., Gambetti, P. & Notari, S. Role of prion protein glycosylation in replication of human prions by protein misfolding Cyclic amplification. Lab. Invest. 99, 1741–1748. https://doi.org/10.1038/s41374-019-0282-1 (2019).
Katorcha, E., Makarava, N., Savtchenko, R. & Baskakov, I. V. Sialylation of the prion protein glycans controls prion replication rate and glycoform ratio. Sci. Rep. 5, 16912. https://doi.org/10.1038/srep16912 (2015).
Srivastava, S. et al. Sialylation controls prion fate in vivo. J. Biol. Chem. 292, 2359–2368. https://doi.org/10.1074/jbc.M116.768010 (2017).
Burke, C. M. et al. Cofactor and glycosylation preferences for in vitro prion conversion are predominantly determined by strain conformation. PLoS Pathog. 16, e1008495. https://doi.org/10.1371/journal.ppat.1008495 (2020).
Piro, J. R. et al. Prion protein glycosylation is not required for strain-specific neurotropism. J. Virol. 83, 5321–5328 (2009).
Nishina, K. A. et al. The stoichiometry of host PrPC glycoforms modulates the efficiency of PrPSc formation in vitro. Biochemistry 45, 14129–14139 (2006).
Sevillano, A. M. et al. Prion protein glycans reduce intracerebral fibril formation and spongiosis in prion disease. J. Clin. Investig. 130, 1350–1362. https://doi.org/10.1172/JCI131564 (2020).
Kang, H. E. et al. Incomplete glycosylation during prion infection unmasks a prion protein epitope that facilitates prion detection and strain discrimination. J. Biol. Chem. 295, 10420–10433. https://doi.org/10.1074/jbc.RA120.012796 (2020).
Cancellotti, E. et al. Glycosylation of PrPC determines timing of neuroinvasion and targeting in the brain following transmissible spongiform encephalopathy infection by a peripheral route. J. Virol. 84, 3464–3475. https://doi.org/10.1128/JVI.02374-09 (2010).
Cancellotti, E. et al. Post-translational changes to PrP alter transmissible spongiform encephalopathy strain properties. EMBO J. 32, 756–769. https://doi.org/10.1038/emboj.2013.6 (2013).
Neuendorf, E. et al. Glycosylation deficiency at either one of the two glycan attachment sites of cellular prion protein preserves susceptibility to bovine spongiform encephalopathy and scrapie infections. J. Biol. Chem. 279, 53306–53316 (2004).
Xiao, X. et al. Glycoform-selective prion formation in sporadic and Familial forms of prion disease. PLoS One. 8, e58786. https://doi.org/10.1371/journal.pone.0058786 (2013).
Callender, J. A. et al. Prion protein post-translational modifications modulate Heparan sulfate binding and limit aggregate size in prion disease. Neurobiol. Dis. 142, 104955. https://doi.org/10.1016/j.nbd.2020.104955 (2020).
Guardia, C. M., De Pace, R., Mattera, R. & Bonifacino, J. S. Neuronal functions of adaptor complexes involved in protein sorting. Curr. Opin. Neurobiol. 51, 103–110. https://doi.org/10.1016/j.conb.2018.02.021 (2018).
Zhang, M. et al. A Translocation pathway for vesicle-mediated unconventional protein secretion. Cell 181, 637–652 e615. https://doi.org/10.1016/j.cell.2020.03.031 (2020).
Daverkausen-Fischer, L., Draga, M. & Prols, F. Regulation of Translation, Translocation, and degradation of proteins at the membrane of the Endoplasmic reticulum. Int. J. Mol. Sci. 23, 96. https://doi.org/10.3390/ijms23105576 (2022).
Padhan, P., Simran, Kumar, N., Verma, S. & Glutathione, S. Transferase: a keystone in parkinson’s disease pathogenesis and therapy. Mol. Cell. Neurosci. 132, 103981. https://doi.org/10.1016/j.mcn.2024.103981 (2025).
Hayes, J. D., Flanagan, J. U. & Jowsey, I. R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 45, 51–88. https://doi.org/10.1146/annurev.pharmtox.45.120403.095857 (2005).
Coccia, E. et al. SIVA-1 regulates apoptosis and synaptic function by modulating XIAP interaction with the death receptor antagonist FAIM-L. Cell. Death Dis. 11, 82. https://doi.org/10.1038/s41419-020-2282-x (2020).
Willemse, S. W. et al. UNC13A in amyotrophic lateral sclerosis: from genetic association to therapeutic target. J. Neurol. Neurosurg. Psychiatry. 94, 649–656. https://doi.org/10.1136/jnnp-2022-330504 (2023).
Lauretti, E., Dincer, O. & Pratico, D. Glycogen synthase kinase-3 signaling in alzheimer’s disease. Biochim. Biophys. Acta Mol. Cell. Res. 1867, 118664. https://doi.org/10.1016/j.bbamcr.2020.118664 (2020).
Neizer-Ashun, F., Bhattacharya, R. & Reality, C. H. E. K. Understanding the biology and clinical potential of CHK1. Cancer Lett. 497, 202–211. https://doi.org/10.1016/j.canlet.2020.09.016 (2021).
Deng, M. et al. Identification and functional analysis of a novel Cyclin e/cdk2 substrate ankrd17. J. Biol. Chem. 284, 7875–7888. https://doi.org/10.1074/jbc.M807827200 (2009).
Zenobio, E. G. et al. Blood clot stability and bone formation following maxillary sinus membrane elevation and space maintenance by means of immediate implant placement in humans. A computed tomography study. J. Craniomaxillofac. Surg. 47, 1803–1808. https://doi.org/10.1016/j.jcms.2018.10.004 (2019).
Stahl, N., Baldwin, M. A., Burlingame, A. L. & Prusiner, S. B. Identification of Glycoinositol phospholipid linked and truncated forms of the scrapie prion protein. Biochemistry 29, 8879–8884 (1990).
Stahl, N. et al. Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain Sialic acid. Biochemistry 31, 5043–5053 (1992).
Kamilaris, C. D. C. & Stratakis, C. A. Multiple endocrine neoplasia type 1 (MEN1): an update and the significance of early genetic and clinical diagnosis. Front. Endocrinol. (Lausanne). 10, 339. https://doi.org/10.3389/fendo.2019.00339 (2019).
Mariani, M. et al. Two murine and human homologs of mab-21, a cell fate determination gene involved in caenorhabditis elegans neural development. Hum. Mol. Genet. 8, 2397–2406. https://doi.org/10.1093/hmg/8.13.2397 (1999).
Wong, R. L., Chan, K. K. & Chow, K. L. Developmental expression of Mab21l2 during mouse embryogenesis. Mech. Dev. 87, 185–188. https://doi.org/10.1016/s0925-4773(99)00127-6 (1999).
Srivastava, D. et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat. Genet. 16, 154–160. https://doi.org/10.1038/ng0697-154 (1997).
Glenewinkel, F. et al. The adaptor protein DCAF7 mediates the interaction of the adenovirus E1A oncoprotein with the protein kinases DYRK1A and HIPK2. Sci. Rep. 6, 28241. https://doi.org/10.1038/srep28241 (2016).
Gao, J. et al. The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis. Elife 4, 896. https://doi.org/10.7554/eLife.07539 (2015).
Fujii, R. et al. Identification of a neuropeptide modified with bromine as an endogenous ligand for GPR7. J. Biol. Chem. 277, 34010–34016. https://doi.org/10.1074/jbc.M205883200 (2002).
AJ, C. Q., Bugai, A. & Barboric, M. Cracking the control of RNA polymerase II elongation by 7SK SnRNP and P-TEFb. Nucleic Acids Res. 44, 7527–7539. https://doi.org/10.1093/nar/gkw585 (2016).
Cascon, A. et al. Whole-exome sequencing identifies MDH2 as a new Familial paraganglioma gene. J. Natl. Cancer Inst. 107, 96. https://doi.org/10.1093/jnci/djv053 (2015).
Acknowledgements
The authors wish to thank Elisabeth Sergison for creating the Cas9-expressing CAD5 monoclonal line, Gary Ward for FACS of the genome-wide libraries, Chris Shoemaker for use of the Sony SH800 sorter as well as technical and scientific guidance, Margaret Ackerman for scientific guidance, Tamutenda Chidawanyika and Kenneth Mark for guidance with CRISPR/Cas9 screening procedures and bioinformatic analysis, Lisa Francomacaro, Rachel Pepin, Abigail Schwind, and Francesca Salerno for scientific guidance and support. Kathryn Beauchemin would also like to thank her husband, Marc Beauchemin, for his unwavering support. This study was funded by the National Institute for Neurological Diseases and Stroke (1R37NS125431, R01NS117276 and R01NS118796 to S.S.) and the National Institutes of Health (P20-GM113132 to Dean Madden).
Funding
This study was funded by the National Institute for Neurological Diseases and Stroke (1R37NS125431, R01NS117276 and R01NS118796 to S.S.) and the National Institutes of Health (5T32AI007519-22 to Deborah Hogan) (P20-GM113132 to Dean Madden).
Author information
Authors and Affiliations
Contributions
K.S.B. performed all of the experiments, wrote the main manuscript text, and prepared figures, participated in project design, experimental troubleshooting, and reviewed and edited the manuscript text. S.S. participated in project design, experimental troubleshooting, and reviewed and edited the manuscript text.
Corresponding author
Ethics declarations
Competing interests
K.S.B. and S.S. are named inventors on a patent application related to this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Beauchemin, K.S., Supattapone, S. Genome-wide screens identify core regulators of cell surface prion protein expression. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37137-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-37137-2


