Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Building new hydrography and virtual watersheds to conserve freshwater fisheries
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 23 January 2026

Building new hydrography and virtual watersheds to conserve freshwater fisheries

  • Lee Benda1,
  • Daniel Miller1,
  • Jason C. Leppi2,
  • Bernard Romey3 &
  • …
  • Kevin Andras1 

Scientific Reports , Article number:  (2026) Cite this article

  • 383 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Environmental impact
  • Environmental sciences

Abstract

The increasing availability of high-resolution digital elevation data is enhancing the mapping of hydrography across Earth’s surface. As pressures on fluvial ecosystems grow, digital maps of river networks should include a data structure necessary to assess aquatic habitats and the environmental threats to them from resource development and climate change. Using examples from across Alaska, USA, we demonstrate how newly available radar and laser digital elevation products are being used to discover thousands of kilometers of previously unmapped channels, ranging from headwater to valley bottom streams. This comprehensive and attributed high-resolution hydrography that connects lentic, lotic, and terrestrial systems—a virtual watershed—has resulted in tens to hundreds of percent increases in potential salmonid habitats across landscapes ranging from the Arctic tundra to southeast rainforests. Our findings show how virtual watersheds enhance understanding of freshwater and diadromous fish habitats and serve as a model for supporting conservation efforts and environmental problem-solving in other regions globally.

Data availability

The datasets and the computer code that were used during this study are available on request from the authors.

References

  1. Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50, 85–94 (2021). https://doi.org/10.1007/s13280-020-01318-8

    Google Scholar 

  2. Collen, B. et al. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 23, 40–51 (2014). https://doi.org/10.1111/geb.12096

    Google Scholar 

  3. Su, G. et al. Human impacts on global freshwater fish biodiversity. Science 371, 835–838 (2021). https://doi.org/10.1126/science.abd3369

    Google Scholar 

  4. Lynch, A. J. et al. People need freshwater biodiversity. WIREs Water 10 https://doi.org/10.1002/wat2.1633 (2023).

  5. Dudgeon, D. Multiple threats imperil freshwater biodiversity in the anthropocene. Curr. Biol. 29, R960-R967 (2019). https://doi.org/10.1016/j.cub.2019.08.002

    Google Scholar 

  6. Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006). https://doi.org/10.1017/S1464793105006950

    Google Scholar 

  7. Comte, L., Olden, J. D., Tedesco, P. A., Ruhi, A. & Giam, X. Climate and land-use changes interact to drive long-term reorganization of riverine fish communities globally. Proc. Natl. Acad. Sci. U. S. A. 118 https://doi.org/10.1073/pnas.2011639118 (2021).

  8. Schindler, D. W. & Smol, J. P. Cumulative effects of climate warming and other human activities on freshwaters of Arctic and Subarctic North America. Ambio 35, 160–168 (2006). https://doi.org/10.1579/0044-7447(2006)35[160:ceocwa]2.0.co;2

    Google Scholar 

  9. Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14, 18–30 (2000). https://doi.org/10.1046/j.1523-1739.2000.99084.x

    Google Scholar 

  10. Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl. Acad. Sci. U S A. 117, 3648–3655 https://doi.org/10.1073/pnas.1912776117 (2020).

    Google Scholar 

  11. Fuller, M. R., Doyle, M. W. & Strayer, D. L. Causes and consequences of habitat fragmentation in river networks. Ann. N. Y. Acad. Sci. 1355, 31–51 (2015). https://doi.org/10.1111/nyas.12853

    Google Scholar 

  12. Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019). https://doi.org/10.1038/s41586-019-1111-9

    Google Scholar 

  13. Schoen, E. R., Wipfli, M. S., Trammell, E. J., Rinella, D. J. & others. Future of Pacific salmon in the face of environmental change: Lessons from one of the world’s remaining productive salmon regions. Fisheries 42(10), 538-553 (2017).

  14. Waldman, J. R. & Quinn, T. P. North American diadromous fishes: drivers of decline and potential for recovery in the anthropocene. Sci Adv 8, eabl5486 (2022). https://doi.org/10.1126/sciadv.abl5486

    Google Scholar 

  15. Leppi, J. C. et al. Landscape geomorphology and local-riverine features influence broad Whitefish (Coregonus nasus) spawning habitat suitability in Arctic Alaska. Ecology of Freshwater Fish 31, 622–639 (2022).

    Google Scholar 

  16. Mathis, L. M., Pella, H. & Thibault, D. Inconsistent regulatory mapping quietly threatens rivers and streams. Environmental Science & Technology 58, 17201–17214 (2024)

  17. Bidlack, A. L., Benda, L. E., Miewald, T., Reeves, G. H. & McMahan, G. Identifying suitable habitat for Chinook salmon across a large, glaciated watershed. Transaction of the American Fisheries Society 143, 689–699 (2014). https://doi.org/10.1080/00028487.2014.880739

    Google Scholar 

  18. Burnett, K. M. et al. Distribution of salmon-habitat potential relative to landscape characteristics and implications for conservation. Ecological Applications 17, 66–80 (2007).

    Google Scholar 

  19. Penaluna, B. E. et al. UPRLIMET: upstream regional lidar model for extent of trout in stream networks. Sci Rep 12, 20266 (2022). https://doi.org/10.1038/s41598-022-23754-0

    Google Scholar 

  20. Benda, L. E., Veldhuisen, C. & Black, J. Debris flows as agents of morphological heterogeneity at low-order confluences, olympic Mountains, Washington. Geological Society of America Bulletin 115, 1110–1121 (2003).

    Google Scholar 

  21. Reeves, G. H., Benda, L. E., Burnett, K. M., Bisson, P. A. & Sedell, J. R. in Evolution and the Aquatic Ecosystem: Defining Unique Units in Population Conservation, American Fisheries Society Symposium 17 (eds J. L. Nielson & D. A. Powers) 334–349 (American Fisheries Society, 1995).

  22. Ebersole, J. L., Wigington, P. J., Leibowitz, S. G., Comeleo, R. L. & Van Sickle, J. Predicting the occurrence of cold-water patches at intermittent and ephemeral tributary confluences with warm rivers. Freshwater Science 34, 111–124 (2015). DOI: 10.1086/678127

    Google Scholar 

  23. Karki, S. et al. Does the topology of the river network influence the delivery of riverine ecosystem services? River Research and Applications 37, 256–269 (2020).

    Google Scholar 

  24. Rice, S. P., Greenwood, M. T. & Joyce, C. B. Tributaries, sediment sources, and the longitudinal organisation of macroinvertebrate fauna along river systems. Canadian Journal of Fisheries and Aquatic Science 58, 824–840 (2001). https://doi.org/10.1139/cjfas-58-4-824

    Google Scholar 

  25. Benda, L. et al. The network dynamics hypothesis: how channel networks structure riverine habitats. Bioscience 54, 413–427 (2004). https://doi.org/10.1641/0006-3568(2004)054[0413:TNDHHC]2.0.CO;2

    Google Scholar 

  26. Mauger, S., Shaftel, R., Leppi, J. C. & Rinella, D. J. Summer temperature regimes in southcentral Alaska streams: watershed drivers of variation and potential implications for Pacific salmon. Anadian Journal of Fisheries and Aquatic Sciences 74, 702–715 (2017).

    Google Scholar 

  27. Power, M. E., Parker, M. S. & Dietrich, W. E. Seasonal reassembly of river food webs under a mediterranean hydrologic regime: floods, droughts, and impacts on fish. Ecological Monographs 78, 263–282 (2008).

    Google Scholar 

  28. Rossi, G. et al. Foodscapes for salmon and other mobile consumers in river networks. BioScience 0, 1–15 (2024).

    Google Scholar 

  29. Swanson, F. J., Kratz, T. K., Caine, N. & Woodmansee, R. G. Landform effects on ecosystem patterns and processes. BioScience 38, 92–98 (1988).

    Google Scholar 

  30. Wondzell, S. M. The role of hyporheic zone across stream networks. Hydrological Processes 25, 3525–3532 (2011).

    Google Scholar 

  31. Dakin Kuiper, S. et al. Characterizing stream morphological features important for fish habitat using airborne laser scanning data. Remote Sensing of Environment 272 (2022). https://doi.org/10.1016/j.rse.2022.112948

  32. Hauer, C., Unfer, G., Tritthart, M. & Habersack, H. Effects of Streeam channel morphology, transport processes and effective discharge on salmonid spawning habitats. Earth Surface Processes and Landforms 36, 672–685 (2011). https://doi.org/10.1002/esp.2087

    Google Scholar 

  33. Tompalski, P., Coops, N. C., White, J. C., Wulder, M. A. & Yuill, A. Characterizing streams and riparian areas with airborne laser scanning data. Remote Sensing of Environment 192, 73–86 (2017). https://doi.org/10.1016/j.rse.2017.01.038

    Google Scholar 

  34. McCleary, R. J. Landscape Organization Based on Application of the Process Domain Concept for a Glaciated Foothills Region Doctor of Philosophy thesis, The University of British Columbia, (2011).

  35. Clarke, S. & Burnett, K. Comparison of digital elevation models for aquatic data development. Photogrammetric Engineering & Remote Sensing 69, 1367–1375 (2003). https://doi.org/10.14358/PERS.69.12.1367

    Google Scholar 

  36. Peñas, F. J., Fernández, F., Calvo, M., Barquín, J. & Pedraz, L. Influence of data sources and processing methods on theoretical river network quality. Limnetica 30, 197–216 (2011). https://doi.org/10.23818/limn.30.16

    Google Scholar 

  37. Zhang, W. & Montgomery, D. R. Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resources Research 30, 1019–1028 (1994).

    Google Scholar 

  38. Barquín, J. et al. Coupling virtual watersheds with ecosystem services assessment: a 21st century platform to support river research and management. WIREs Water 2, 609–621 (2015). https://doi.org/10.1002/wat2.1106

    Google Scholar 

  39. Benda, L. et al. Building virtual watersheds: a global opportunity to strengthen resource management and conservation. Environmental Management 57, 722–739 (2016). https://doi.org/10.1007/s00267-015-0634-6

    Google Scholar 

  40. Maxwell, A. E. & Shobe, C. M. Land-surface parameters for Spatial predictive mapping and modeling. Earth-Science Reviews 226 (2022). https://doi.org/10.1016/j.earscirev.2022.103944

  41. Pirotti, F. & Tarolli, P. Suitability of lidar point density and derived landform curvature maps for channel network extraction. Hydrological Processes 24, 1187–1197 (2010). https://doi.org/10.1002/hyp.7582

    Google Scholar 

  42. Craun, K. J. Mapping benefits from updated Ifsar data in Alaska—Improved source data enables better maps. U.S. Geological Survey Fact Sheet 2015-3051, 1-2 (2015).

  43. Maune, D. F. in American Society of Photogrammetry and Remote Sensing (ASPRS) Annual Conference. 967 (Curran Associates, Inc.).

  44. Miller, D., Benda, L., DePasquale, J. & Albert, D. Creation of a Digital Flowline Network from IfSAR 5-m DEMs for the Matanuska-Susitna Basins: a resource for update of the National Hydrographic Dataset in Alaska. (2015).

  45. U.S.G.S. Elevation-Derived hydrography Data Aquisition Specifications 2024. rev. A. 164 pp. (2024).

  46. Archuleta, C. M. & Terziotti, S. Elevation-Derived Hydrography - Representation, Extraction, Attribution, and Delineation Rules. 60 pp. (U.S. Geological Survey, 2023).

  47. Dietterick, B. C., White, R. & Hilburn, R. in Proceedings of coast redwood forests in a changing California: A symposium for scientists and managers. Gen. Tech. Rep. PSW-GTR-238 (eds Richard B. Standiford, Theodore J. Weller, Douglas D. Piirto, & John D. Stuart) 639–648 (Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, 2012).

  48. James, L. A., Watson, D. G. & Hansen, W. F. Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA. Catena 71, 132–144 (2007). https://doi.org/10.1016/j.catena.2006.10.010

  49. Metes, M. J. et al. Ephemeral stream network extraction from Lidar-Derived elevation and topographic attributes in urban and forested landscapes. JAWRA Journal of the American Water Resources Association 58, 547–565 (2022). https://doi.org/10.1111/1752-1688.13012

    Google Scholar 

  50. Range, B. C. M. o. F. a. in 2nd edition, version 2.1. ISBN 07726-3664-8. (1998).

  51. Forest practices board manual, s. Washington Forest Practices Board. (Olympia, Washington, 2002).

    Google Scholar 

  52. Service, U. S. F. Vol. Chapter 20-Fish and Aquatic Stream Habitat Survey 55 (U. S. Forest Service, 2001).

  53. Romey, B. T. & Martin, D. Landscape-level model for predicting juvenile Coho salmon rearing habitat in Southeast Alaska. Romey Riverscape Sciences, Technical Report 18-03, 1-17 (2018).

  54. McCleary, R. J. & Hassan, M. A. Predictive modeling and Spatial mapping of fish distributions in small streams of the Canadian Rocky mountain foothills. Canadian Journal of Fisheries and Aquatic Science 65, 319–333 (2008). https://doi.org/10.1139/F07-161

    Google Scholar 

  55. Pess, G. R. et al. Historic and Current Factors that Limit Coho Salmon (Oncorhynchus kisutch) Production in the Stillaguamish River basin, Washington State: Implications for Salmonid Habitat Protection and Restoration., (Prepared for Snohomish County Department of Public Works and The Stillaguamish Tribe of Indians, 1999).

  56. Romey, B. T. Modeling spawning habitat potential for chum (Oncorhynchus keta) and pink salmon (O. gorbuscha) in relation to landscape characteristics in coastal Southeast Alaska Master of Science thesis, Portland State University, (2018).

  57. Sockeye Salmon Intrinsic Potential Model (Terrainworks, Mt. Shasta, California, 2016).

  58. Dittbrenner, B. J. et al. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation. PLoS ONE 13, e0192538 (2018).

    Google Scholar 

  59. Pollock, M. M., Pess, G., Beechie, T. J. & Montgomery, D. R. The importance of beaver ponds to Coho salmon production in the stillaguamish river basin, Washington, USA. North American Journal of Fisheries Management 24, 749–760 (2004).

    Google Scholar 

  60. Ruggerone, G. T., Agler, B. A. & Nielsen, J. L. Evidence for competition at sea between Norton sound Chum salmon and Asian hatchery Chum salmon. Environmental Biology of Fishes 94, 149–163 (2012).

    Google Scholar 

  61. Heinl, S. C. et al. Vol. Fishery manuscript series 17–11. (ed Alaska Department of Fish and Game) 105pp. (2017).

  62. Murphy, M. L. (ed NOAA Coastal Ocean Program Decision Analysis Series No. 7) 156 pp. (NOAA Coastal Ocean Office, Silver Spring, MD, 1995).

  63. Cathcart, C. N. Flying the frontier: perspectives from the great Alaska freshwater fish inventory. Fisheries 44, 398–402 (2019).

    Google Scholar 

  64. Geifer, J. & Graziano, S. Vol. Special Publications No. 24 – 01 To 24 – 06. (ed Alaska Department of Fish and Game) (2024).

  65. Burnett, K. M. et al. 2011 Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative, Landscape Predictors of Coho Salmon. 79 (2013).

  66. Terziotti, S. & Archuleta, C. M. Elevation-Derived Hydrography Acquisition Specifications. (U.S. Geological Survey, 2020).

  67. Benda, L. et al. NetMap: A new tool in support of watershed science and resource management. Forest Science 53, 206–219 (2007).

    Google Scholar 

  68. Benda, L. E., Miller, D. J. & Barquin, J. Creating a catchment scale perspective for river restoration. Hydrology and Earth System Science 15, 2995–3015 (2011). https://doi.org/10.5194/hess-15-2995-2011

    Google Scholar 

  69. Benda, L. E. & Dunne, T. Stochastic forcing of sediment supply to channel networks from landsliding and debris flow. Water Resources Research 33, 2849–2863 (1997).

    Google Scholar 

  70. Benda, L. E. & Dunne, T. Stochastic forcing of sediment routing and storage in channel networks. Water Resources Research 33, 2865–2880 (1997).

    Google Scholar 

  71. Benda, L. E., Miller, D. J., Dunne, T., Reeves, G. H. & Agee, J. K. in River Ecology and Management (eds Robert J. Naiman & Robert E. Bilby) 261–288 (Springer-Verlag, 1998).

  72. Miller, D., Benda, L., Furniss, M. & Penney, M. in General Technical Report RMRS-GTR-101-CD (US Forest Service, 2002).

  73. Agrawal, A. et al. Predicting the potential for historical coho, chinook and steelhead habitat in northern California, NOAA Technical Memorandum NMFS. 25 (National Oceanic and Atmospheric Administration, 2005).

  74. Clarke, S. E., Burnett, K. M. & Miller, D. J. Modeling streams and hydrogeomorphic attributes in Oregon from digital and field data. Journal of the American Water Resources Association 44, 459–477 https://doi.org/10.1111/j.1752-1688.2008.00175.x (2008).

    Google Scholar 

  75. Sheer, M. B. & Steel, E. A. Lost watersheds: barriers, aquatic habitat connectivity, and salmon persistence in the Willamette and lower Columbia river basins. Transactions of the American Fisheries Society 135, 1645–1669 (2006). https://doi.org/10.1577/T05-221.1

    Google Scholar 

  76. Steel, E. A. et al. Landscape models to understand Steelhead (Oncorhynchusmykiss) distribution and help prioritize barrier removals in the Willamette basin, Oregon, USA. Canadian Journal of Fisheries and Aquatic Science 61, 999–1011 (2004). https://doi.org/10.1139/F04-042

    Google Scholar 

  77. Steel, E. A. et al. A spatially explicit decision support system for watershed-scale management of salmon. Ecology and Society 13, 50 (2008).

    Google Scholar 

  78. Miller, D. J. in Landscape Dynamics and Forest Management, General Technical Report RMRS-GTR-101CD (USDA Forest Service, Rocky Mountain Research Station, 2003).

  79. Cucchiaro, S. et al. How does co-registration affect geomorphic change estimates in multi-temporal surveys? GIScience & Remote Sensing 57, 611–632 (2020). https://doi.org/10.1080/15481603.2020.1763048

    Google Scholar 

  80. Soille, P., Vogt, J. & Colombo, R. Carving and adaptive drainage enforcement of grid digital elevation models. Water Resources Research 39 (2003). https://doi.org/10.1029/2002WR001879

  81. Montgomery, D. R. & Foufoula-Georgiou, E. Channel network source representation using digital elevation models. Water Resources Research 29, 3925–3934 (1993).

    Google Scholar 

  82. Tarboton, D. G. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 33, 309–319 (1997).

    Google Scholar 

  83. Jasiewicz, J. & Stepinski, T. F. Geomorphons - a pattern recognition approach to classification and mapping of landforms. Geomorphology 182, 147–156 (2013). https://doi.org/10.1016/j.geomorph.2012.11.005

    Google Scholar 

  84. Newman, D. R., Lindsay, J. B. & Cockburn, J. M. H. Evaluating metrics of local topographic position for multiscale geomorphometric analysis. Geomorphology 312, 40–50 (2018). https://doi.org/10.1016/j.geomorph.2018.04.003

    Google Scholar 

  85. Orlandini, S., Moretti, G., Franchini, M., Aldighieri, B. & Testa, B. Path-based methods for the determination of nondispersive drainage directions in grid-based digital elevation models. Water Resources Research 39 (2003). https://doi.org/10.1029/2002WR001639

  86. Miller, D. J. & Burnett, K. M. Effects of forest cover, topography, and sampling extent on the measured density of shallow, translational landslides. Water Resources Research 43, 23 (2007). https://doi.org/10.1029/2005WR004807

    Google Scholar 

  87. Miller, D. J. & Burnett, K. M. A probabilistic model of debris-flow delivery to stream channels, demonstrated for the Coast range of Oregon, USA. Geomorphology 94, 184–205 (2008).

    Google Scholar 

  88. Halabisky, M. et al. The wetland intrinsic potential tool: mapping wetland intrinsic potential through machine learning of multi-scale remote sensing proxies of wetland indicators. Hydrology and Earth System Science 27 (2022). https://doi.org/10.5194/hess-27-3687-2023

  89. Busch, D. S., Sheer, M., Burnett, K., McElhany, P. & Cooney, T. Landscape-level model to predict spawning habitat for lower Columbia river fall Chinook salmon (Oncorhynchus tshawytscha). River Research and Applications (2011). https://doi.org/10.1002/rra.1597

    Google Scholar 

  90. Flitcroft, R., Burnett, K., Snyder, J., Reeves, G. & Ganio, L. Riverscape patterns among years of juvenile Coho salmon in midcoastal oregon: implications for conservation. Transaction of the American Fisheries Society 143, 26–38 (2014).

    Google Scholar 

  91. Manly, B. F. J., McDonald, L. L., Thomas, D. L. & Erickson, W. P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies. (Springer, 2002).

  92. Fransen, B. R., Duke, S. D., McWethy, L. G., Walter, J. K. & Bilby, R. E. A logistic regression model for predicting the upstream extent of fish occurrence based on geographical information systems data. North American Journal of Fisheries Management 26, 960–975 (2006). https://doi.org/10.1577/M04-187.1

    Google Scholar 

  93. Mochnacz, N. J., MacKenzie, D. I., Koper, N., Docker, M. F. & Isaak, D. J. Fringe effects: detecting bull trout (Salvelinus confluentus) at distributional boundaries in a montane watershed. Canadian Journal of Fisheries and Aquatic Sciences:1–15. 78, 1030–1044 (2021).

  94. Walther, E. J., Zimmerman, M. S. & Westley, P. A. H. Landscape attributes explain salmonid ecological neighbourhoods across a complex river network. Freshwater Biology 66, 1930–1948 (2021).

    Google Scholar 

  95. Schwartz, J. S. Influence of geomorphology and land use on distribution and abundance of salmonids in a coastal Oregon basin Master of Science thesis, Oregon State University, Corvallis, OR., (1990).

  96. Romey, B. & Martin, D. Landscape-Level Extent of Resident Fish Occupancy in the Alexander Archipelago Predicting resident salmonid population boundaries with variable-length reach habitat attributes derived from high-resolution LiDAR. (Washington State, 2023).

  97. Heim, K. C., McMahon, T. E., Calle, L., Wipfli, M. S. & Falke, J. A. A general model of temporary aquatic habitat use: water phenology as a life history filter. Fish Fish (2019). https://doi.org/10.1111/faf.12386

    Google Scholar 

  98. White, S. M. & Rahel, F. J. Complementation of habitats for Bonneville cutthroat trout in watersheds influenced by Beavers, Livestock, and drought. Transactions of the American Fisheries Society 137, 881–894 (2008).

    Google Scholar 

  99. Addicott, J. F. et al. Ecological neighborhoods: scaling environmental patterns. Oikos 49, 340–346 (1987). https://doi.org/10.2307/3565770

    Google Scholar 

  100. Falke, J. A., Dunham, J. B., Jordan, C. E., McNyset, K. M. & Reeves, G. H. Spatial ecological processes and local factors predict the distribution and abundance of spawning by Steelhead (Oncorhynchus mykiss) across a complex riverscape. PLoS One 8, 1-11 (2013).

  101. Christensen, R. Keex’ Kwáan Community Forest Partnership Landscape Assessment. 22 (Keex’ Kwáan Community, 2024).

  102. Cram, J. M. et al. Spatial variability of Chinook salmon spawning distribution and habitat preferences. Transaction of the American Fisheries Society 146, 206–221 (2017).

    Google Scholar 

  103. González-Ferreras, A. M. & Barquín, J. Mapping the temporary and perennial character of whole river networks. Water Resources Research (2017). https://doi.org/10.1002/2017wr020390

    Google Scholar 

  104. Alvarez-Cabria, M., Gonzalez-Ferreras, A. M., Penas, F. J. & Barquin, J. Modelling macroinvertebrate and fish biotic indices: from reaches to entire river networks. Sci Total Environ 577, 308–318 (2017). https://doi.org/10.1016/j.scitotenv.2016.10.186

    Google Scholar 

  105. Mazzeo, N. et al. Inter and transdisciplinarity strategies for evaluating and improving water quality monitoring systems: Uruguay as a study case. Environmental Science & Policy 154, 1-15 (2024).

  106. Fraley, K. M., Falke, J. A., Yanusz, R. & Ivey, S. Seasonal movements and habitat use ofseasonal movements and habitat use of potamodromous rainbow trout across a complex Alaska riverscape. Transactions of the American Fisheries Society 145, 1077–1092 (2016).

    Google Scholar 

  107. Huntsman, B. M. & Falke, J. A. Main stem and off-channel habitat use by juvenile Chinook salmon in a sub-Arctic riverscape. Freshwater Biology 64, 433–446 (2019).

    Google Scholar 

  108. Benda, L. E. et al. The network dynamics hypothesis: how channel networks structure riverine habitats. BioScience 54, 413–427 (2004).

    Google Scholar 

  109. Benda, L. E., Andras, K., Miller, D. J. & Bigelow, P. Confluence effects in rivers: interactions of basin scale, network geometry, and disturbance regimes. Water Resources Research 40, W05402 (2004). https://doi.org/10.1029/2003WR002583

    Google Scholar 

  110. Bigelow, P. E., Benda, L. E., Miller, D. J. & Burnett, K. M. On debris flows, river networks, and the Spatial structure of channel morphology. Forest Science 53, 220–238 (2007).

    Google Scholar 

  111. Flitcroft, R. L. et al. Wildfire May increase habitat quality for spring Chinook salmon in the Wenatchee river subbasin, WA, USA. Forest Ecology and Management 359, 126–140 (2016).

    Google Scholar 

  112. Atha, J. B. Fluvial wood presence and dynamics over a thirty year interval in forested watersheds PhD thesis, University of Oregon, (2013).

  113. Fernández, D., Barquín, J., Álvarez-Cabria, M. & Peñas, F. J. Delineating riparian zones for entire river networks using Geomorphological criteria. Hydrology and Earth System Sciences 9, 4045–4071 (2012).

    Google Scholar 

  114. McCleary, R. J., Hassan, M. A., Miller, D. & Moore, R. D. Spatial organization of process domains in headwater drainage basins of a glaciated foothills region with complex longitudinal profiles. Water Resources Research 47 (2011). https://doi.org/10.1029/2010WR009800

  115. Peñas, F. J., Barquín, J., Snelder, T. H., Booker, D. J. & Álvarez, C. The influence of methodological procedures on hydrological classification performance. Hydrol. Earth Syst. Sci. 18, 3393–3409 (2014). https://doi.org/10.5194/hess-18-3393-2014

    Google Scholar 

  116. Ji, Y., Tijui, C. & Cunyoug, J. An introduction to netmap: a new technology of management and assessment of forest watershed ecosystem. Forest Engineering 29, 44–48 (2013).

    Google Scholar 

  117. Sloat, M. R., Reeves, G. H. & Christiansen, K. R. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in Southeast Alaska. Glob Chang Biol 23, 604–620 (2017). https://doi.org/10.1111/gcb.13466

    Google Scholar 

  118. Jones, J. & Benda, L. 3DHP hydrography in Alaska. In Alaska Geosummit 2025. (Alaska Geospatial Council) (2025)

  119. Benda, L. & Jones, J. Virtual Watersheds in Alaska: characterizing slmon habitats, flood zones, riparian functions, road-channel interactions, and landslide-debris flow susceptibility. In Alaska Geosummit 2025. (Alaska Geospatial Council) (2025)

Download references

Acknowledgements

This work was generously supported by funding made available to the authors in the design, development, and application of virtual watersheds in Alaska, including the U.S. Forest Service, U.S. Resource Conservation Service, Ecotrust, The Nature Conservancy, U.S. Geological Survey, University of Alaska, and The Wilderness Society. We thank the four anonymous reviewers for the valuable feedback and helpful suggestions that improved the manuscript.

Author information

Authors and Affiliations

  1. TerrainWorks, Mt. Shasta, CA, USA

    Lee Benda, Daniel Miller & Kevin Andras

  2. The Wilderness Society, Anchorage, AK, USA

    Jason C. Leppi

  3. Romey Riverscape Science, Longview, WA, USA

    Bernard Romey

Authors
  1. Lee Benda
    View author publications

    Search author on:PubMed Google Scholar

  2. Daniel Miller
    View author publications

    Search author on:PubMed Google Scholar

  3. Jason C. Leppi
    View author publications

    Search author on:PubMed Google Scholar

  4. Bernard Romey
    View author publications

    Search author on:PubMed Google Scholar

  5. Kevin Andras
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Dr. Lee Benda implemented and conducted the studies as P.I.Dr. Daniel Miller developed all of the computer algorithms and code for the implementation of the study.Jason Leppi (M.sc.) created and applied a Broad Whitefish habitat model in the Arctic, as part of the study.Bernard Romey (M.sc.) created and implemented a coho, pink, and chum salmon model in southeast Alaska, as part of the study.Kevin Andras (M.sc.) conducted all of the GIS analysis in the implementation of the study.

Corresponding author

Correspondence to Lee Benda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benda, L., Miller, D., Leppi, J.C. et al. Building new hydrography and virtual watersheds to conserve freshwater fisheries. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37143-4

Download citation

  • Received: 19 May 2025

  • Accepted: 20 January 2026

  • Published: 23 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-37143-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene