Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Hyperparameter optimization to enhance the performance of deep learning models for the early detection of invasive turtles in Korea
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 06 February 2026

Hyperparameter optimization to enhance the performance of deep learning models for the early detection of invasive turtles in Korea

  • Jong-Won Baek1 na1,
  • Jung-Il Kim2 na1,
  • Min-Ho Mun1 &
  • …
  • Chang-Bae Kim1 

Scientific Reports , Article number:  (2026) Cite this article

  • 586 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Computational biology and bioinformatics
  • Ecology
  • Engineering
  • Mathematics and computing

Abstract

Invasive freshwater turtles are major drivers of biodiversity loss, underscoring the importance of early detection and management. However, it is challenging for experts to manually monitor a broad geographic area, necessitating support tools. Deep learning-based object detection models have displayed high performance in automating wildlife monitoring tasks. Furthermore, hyperparameter optimization, including optimizer selection and hyperparameter tuning, might further enhance performance by optimizing training settings to the dataset. In this study, an optimized model was developed to apply hyperparameter optimization to detect and classify six invasive turtle species in Korea from images. The optimized model was compared to a default model trained using the default optimizer and hyperparameters. The optimized model outperformed the default model, as indicated by the evaluations of mean average precision using a fixed intersection over union threshold of 0.5 (0.973 vs. 0.959) and a range of thresholds ranging from 0.5 to 0.95 (0.841 vs. 0.815). The classification accuracy of the optimized model reached 92.7%, exceeding that of the default model (89.9%). These findings highlight the utility of hyperparameter optimization and suggest that the proposed approach can support the early detection of invasive turtles, thereby enhancing to invasive species management.

Similar content being viewed by others

Deep learning-based image classification of turtles imported into Korea

Article Open access 07 December 2023

Improving prediction region accuracy in marine animal movement with temporal fusion transformer

Article Open access 04 December 2025

Hierarchical image classification using transfer learning to improve deep learning model performance for amazon parrots

Article Open access 30 January 2025

Data availability

All data except images the authors do not have the right to share and trained models are available from the Kaggle repository (https://www.kaggle.com/datasets/bjh03205/invasive-turtle-dataset).

References

  1. Linders, T. E. W. et al. Direct and indirect effects of invasive species: biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. J. Ecol. 107 (6), 2660–2672 (2019).

    Google Scholar 

  2. Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46 (1), 10–18 (2009).

    Google Scholar 

  3. Jenkins, P. T. Broken screens: the regulation of live animal imports in the United States. Defenders of Wildlife, (Washington, DC, 2007).

  4. Ricciardi, A. Are modern biological invasions an unprecedented form of global change? Conserv. Biol. 21 (2), 329–336. https://doi.org/10.1111/j.1523-1739.2006.00615.x (2007).

    Google Scholar 

  5. Smith, K. F. et al. Reducing the risks of the wildlife trade. Science 324, 594–595. https://doi.org/10.1126/science.1174460 (2009).

    Google Scholar 

  6. Vitousek, P. M., D’Antonio, C. M., Loope, L. L. & Westbrooks, R. Biological invasions as global environmental change. Am. Sci. 84 (5), 468–478 (1996).

    Google Scholar 

  7. Prentis, P. J., Wilson, J. R. U., Dormontt, E. E., Richardson, D. M. & Lowe, A. J. Adaptive evolution in invasive species. Trends Plant. Sci. 13 (6), 284–291. https://doi.org/10.1016/j.tplants.2008.03.004 (2008).

    Google Scholar 

  8. Gariboldi, A. & Zuffi, M. A. Notes on the population reinforcement project for Emys orbicularis (Linnaeus, 1758) in a natural park of Northwestern Italy. Herpetozoa 7 (3/4), 83–89 (1994).

    Google Scholar 

  9. Spinks, P. Q., Pauly, G. B., Crayon, J. J. & Shaffer, H. B. Survival of the Western pond turtle (Emys marmorata) in an urban California environment. Conserv. Biol. 17 (1), 113–127. https://doi.org/10.1016/S0006-3207(02)00392-0 (2003).

    Google Scholar 

  10. Zhang, C. et al. Greater physiological resistance to heat May favour an invasive freshwater turtle, enabling it to outcompete native species in a changing climate. Freshw. Biol. 68 (9), 1588–1601. https://doi.org/10.1111/fwb.14153 (2023).

    Google Scholar 

  11. Liu, S. et al. E-commerce promotes trade in invasive turtles in China. Oryx 55 (3), 352–355 (2021).

    Google Scholar 

  12. Nishimoto, M. et al. Spatial optimization of invasive species control informed by management practices. Ecol. Appl. 31 (3), e02261 (2021).

    Google Scholar 

  13. Lee, K. H. et al. A check list and population trends of invasive amphibians and reptiles in Taiwan. ZooKeys 829, 85 (2019).

    Google Scholar 

  14. Taniguchi, M., Lovich, J. E., Mine, K., Ueno, S. & Kamezaki, N. Unusual population attributes of invasive red-eared slider turtles (Trachemys scripta elegans) in japan: do they have a performance advantage? Aquat. Invasions. 12 (1), 97–108 (2017).

    Google Scholar 

  15. Lee, D. H. et al. Current status and management of alien turtles in Korea. J. Environ. Impact Assess. 25 (5), 319–332 (2016).

    Google Scholar 

  16. De Groot, M. et al. Challenges and solutions in early detection, rapid response and communication about potential invasive alien species in forests. Manag Biol. Invasions. 11 (4), 637–660 (2020).

    Google Scholar 

  17. Shafiq, A., Aftab, M. & Ali, M. M. Artificial intelligence in invasive species management: transforming detection and response. Trends Anim. Plant. Sci. 4, 82–96. https://doi.org/10.62324/TAPS/2024.050 (2024).

    Google Scholar 

  18. Larson, E. R. et al. From eDNA to citizen science: emerging tools for the early detection of invasive species. Front. Ecol. Environ. 18 (4), 194–202 (2020).

    Google Scholar 

  19. Fănaru, G. et al. Nesting ecology and confirmed breeding of the invasive pond slider trachemys scripta in an urban environment. Romania Eur. J. Wildl. Res. 70 (3), 61. https://doi.org/10.1007/s10344-024-01815-1 (2024).

    Google Scholar 

  20. Park, S. M. et al. Distribution status for invasive alien freshwater turtles trachemys scripta (Thunberg in Schoepff, 1792) on Jeju Island, Republic of Korea. BioInvasions Rec. 11 (3), 803–810. https://doi.org/10.3391/bir.2022.11.3.22 (2022).

    Google Scholar 

  21. Hochachka, W. M. et al. Data-intensive science applied to broad-scale citizen science. Trends Ecol. Evol. 27 (2), 130–136. https://doi.org/10.1016/j.tree.2011.11.006 (2012).

    Google Scholar 

  22. Aota, T., Ashizawa, K., Mori, H., Toda, M. & Chiba, S. Detection of Anolis carolinensis using drone images and a deep neural network: an effective tool for controlling invasive species. Biol. Invasions. 23 (5), 1321–1327. https://doi.org/10.1007/s10530-020-02434-y (2021).

    Google Scholar 

  23. Lamelas-López, L. & Salgado, I. Applying camera traps to detect and monitor introduced mammals on oceanic Islands. Oryx 55 (2), 181–188. https://doi.org/10.1017/S0030605319001364 (2021).

    Google Scholar 

  24. Zhang, Q., Ahmed, K., Sharda, N. & Wang, H. A comprehensive survey of animal identification: exploring data sources, AI advances, classification Obstacles and the role of taxonomy. Intell. Syst. 2024 (1), 7033535. https://doi.org/10.1155/2024/7033535 (2024).

    Google Scholar 

  25. Böhner, H., Kleiven, E. F., Ims, R. A. & Soininen, E. M. A semi-automatic workflow to process images from small mammal camera traps. Ecol. Inf. 76, 102150. https://doi.org/10.1016/j.ecoinf.2023.102150 (2023).

    Google Scholar 

  26. Bothmann, L. et al. Automated wildlife image classification: an active learning tool for ecological applications. Ecol. Inf. 77, 102231. https://doi.org/10.1016/j.ecoinf.2023.102231 (2023).

    Google Scholar 

  27. Petso, T., Jamisola, R. S. Jr., Mpoeleng, D., Bennitt, E. & Mmereki, W. Automatic animal identification from drone camera based on point pattern analysis of herd behaviour. Ecol. Inf. 66, 101485. https://doi.org/10.1016/j.ecoinf.2021.101485 (2021).

    Google Scholar 

  28. Kim, J. I., Baek, J. W. & Kim, C. B. Application of deep learning-based object detection models to classify images of Cacatua Parrot species. Anim. Syst. Evol. Divers. 40 (4), 266–275. https://doi.org/10.5635/ASED.2024.40.4.008 (2024).

    Google Scholar 

  29. Jocher, G. & Qiu, J. Ultralytics yolo11. Assessed 3 April 2025. (2024). https://github.com/ultralytics/ultralytics

  30. Wang, C. Y. & Liao, H. Y. M. YOLOv1 to YOLOv10: the fastest and most accurate real-time object detection systems. APSIPA Trans. Signal. Inf. Process. 13 (1). https://doi.org/10.48550/arXiv.2408.09332 (2024).

  31. Gautam, D. et al. Detection of invasive species (Siam Weed) using drone-based imaging and YOLO deep learning model. Remote Sens. 17 (1), 120. https://doi.org/10.3390/rs17010120 (2025).

    Google Scholar 

  32. Baek, J. W., Kim, J. I. & Kim, C. B. Deep learning-based image classification of turtles imported into Korea. Sci. Rep. 13 (1), 21677. https://doi.org/10.1038/s41598-023-49022-3 (2023).

    Google Scholar 

  33. Yang, L. & Shami, A. On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing 415, 295–316. https://doi.org/10.48550/arXiv.2007.15745 (2020).

    Google Scholar 

  34. Dahiya, N. et al. Hyper-parameter tuned deep learning approach for effective human Monkeypox disease detection. Sci. Rep. 13 (1), 15930 (2023).

    Google Scholar 

  35. Tan, F. G., Yuksel, A. S. & Aksoy, B. Deep learning-based hyperparameter tuning and performance comparison. In The International Conference on Artificial Intelligence and Applied Mathematics in Engineering, 128–140 (2023).

  36. Isa, I. S., Rosli, M. S. A., Yusof, U. K., Maruzuki, M. I. F. & Sulaiman, S. N. Optimizing the hyperparameter tuning of YOLOv5 for underwater detection. IEEE Access. 10, 52818–52831 (2022).

    Google Scholar 

  37. Popek, Ł., Perz, R., Galiński, G. & Abratański, A. Optimization of animal detection in thermal images using YOLO architecture. Int. J. Electron. Telecommun. 69 (4), 826–831 (2023).

  38. Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13 (2), 281–305 (2012).

  39. Huerta-Ramos, G. & Luštrik, R. Inat_Images [dataset]. Zenodo https://doi.org/10.5281/zenodo.4733367 (2021).

    Google Scholar 

  40. Baek, H. J., Min, J. S., Lee, S. I. & Yoo, H. R. Non-native turtles in South Korea. 20–113, Korea. (2024).

  41. Charette, R. CITES identification guide–turtles & tortoises. Blue section Introduction-8, Yellow section Introduction-60, Canada. (1999).

  42. Kim, S. H. et al. Information for the field management of invasive alien species in Korea. 36–65, Korea. (2021).

  43. Tzutalin, D. LabelImg [software]. GitHub. https://github.com/tzutalin/labelImg (2015).

  44. Khanam, R. & Hussain, M. YOLOv11: an overview of the key architectural enhancements. https://doi.org/10.48550/arXiv.2410.17725 (2024).

  45. Buslaev, A. et al. Albumentations: fast and flexible image augmentations. Information 11 (2), 125. https://doi.org/10.3390/info11020125 (2020).

    Google Scholar 

  46. Bochkovskiy, A., Wang & Liao, C. H. M. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020).

  47. Zheng, Z. et al. Distance-IoU loss: faster and better learning for bounding box regression. In: Proceedings of the AAAI Conference on Artificial Intelligence 34(7), 12993–13000.https://doi.org/10.48550/arXiv.1911.08287 (2020).

  48. Li, X. et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection. Adv. Neural Inf. Process. Syst. 33, 21002–21012. https://doi.org/10.48550/arXiv.2006.04388 (2020).

    Google Scholar 

  49. Martinez, B. et al. Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biol. Invasions. 22 (1), 75–100. https://doi.org/10.1007/s10530-019-02146-y (2020).

    Google Scholar 

  50. Liu, L. et al. On the variance of the adaptive learning rate and beyond. ArXiv Preprint arXiv:1908 03265. https://doi.org/10.48550/arXiv.1908.03265 (2019).

    Google Scholar 

  51. Peng, Y. L. & Lee, W. P. Practical guidelines for resolving the loss divergence caused by the root-mean-squared propagation optimizer. Appl. Soft Comput. 153, 111335. https://doi.org/10.1016/j.asoc.2024.111335 (2024).

    Google Scholar 

  52. Zhou, P., Feng, J., Ma, C., Xiong, C. & Hoi, S. C. H. Towards theoretically Understanding why SGD generalizes better than Adam in deep learning. Adv. Neural Inf. Process. Syst. 33, 21285–21296. https://doi.org/10.48550/arXiv.2010.05627 (2020).

    Google Scholar 

  53. Caldarola, D., Caputo, B. & Ciccone, M. Improving generalization in federated learning by seeking flat minima. In European Conference on Computer Vision, 654–672. (2022).

  54. Ansari, M. Z., Ahmad, F., Taheri, E. N., Reddy, R. G. J. & Mabood, F. Animal identity recognition using object detection techniques. Procedia Comput. Sci. 233, 651–659. https://doi.org/10.1016/j.procs.2024.03.254 (2024).

    Google Scholar 

  55. Vajjarapu, D. Classifying cow stall numbers using YOLO. ArXiv Preprint arXiv:2401 03340. https://doi.org/10.48550/arXiv.2401.03340 (2023).

    Google Scholar 

  56. Perin, G. & Picek, S. On the influence of optimizers in deep learning-based side-channel analysis. In International Conference on Selected Areas in Cryptography, 615–636. (2020).

  57. Jocher, G., Yasin, M., Munawar, M. R. & Noyce, M. Hyperparameter tuning guide. Ultralytics. Assessed 1 2025. https://docs.ultralytics.com/guides/hyperparameter-tuning (2024).

  58. Li, Y. et al. Dynamic mosaic algorithm for data augmentation. Math. Biosci. Eng. 20 (4), 7193–7216. https://doi.org/10.3934/mbe.2023311 (2023).

    Google Scholar 

  59. Baek, J. W., Kim, J. I. & Kim, C. B. Deep learning-based image classification of sea turtles using object detection and instance segmentation models. PLoS One. 19 (11), e0313323. https://doi.org/10.1371/journal.pone.0313323 (2024).

    Google Scholar 

  60. Kim, J. I., Baek, J. W. & Kim, C. B. Hierarchical image classification using transfer learning to improve deep learning model performance for Amazon parrots. Sci. Rep. 15 (1), 3790. https://doi.org/10.1038/s41598-025-88103-3 (2025).

    Google Scholar 

  61. Spiesman, B. J. et al. Assessing the potential for deep learning and computer vision to identify bumble bee species from images. Sci. Rep. 11 (1), 7580. https://doi.org/10.1038/s41598-021-87210-1 (2021).

    Google Scholar 

  62. Ashiq, W. et al. Roman Urdu hate speech detection using hybrid machine learning models and hyperparameter optimization. Sci. Rep. 14 (1), 28590 (2024).

    Google Scholar 

  63. Srinivasu, P. N., Kumari, G. L. A., Narahari, S. C., Ahmed, S. & Alhumam, A. Exploring the impact of hyperparameter and data augmentation in YOLO V10 for accurate bone fracture detection from X-ray images. Sci. Rep. 15 (1), 9828 (2025).

    Google Scholar 

  64. Subramanian, M., Shanmugavadivel, K. & Nandhini, P. S. On fine-tuning deep learning models using transfer learning and hyper-parameters optimization for disease identification in maize leaves. Neural Comput. Appl. 34 (16), 13951–13968 (2022).

    Google Scholar 

  65. Chan, W. H., Fung, B. S., Tsang, D. H. & Lo, I. M. A freshwater algae classification system based on machine learning with StyleGAN2-ADA augmentation for limited and imbalanced datasets. Water Res. 243, 120409. https://doi.org/10.1016/j.watres.2023.120409 (2023).

    Google Scholar 

  66. Zhang, Q. et al. A few-shot rare wildlife image classification method based on style migration data augmentation. Ecol. Inf. 77, 102237. https://doi.org/10.1016/j.ecoinf.2023.102237 (2023).

    Google Scholar 

  67. Tian, Y., Ye, Q. & Doermann, D. Yolov12: attention-centric real-time object detectors. arXiv preprint arXiv:2502.12524. (2025).

  68. Rabaglia, R. J., Duerr, D., Acciavatti, R. & Ragenovich, I. Early Detection and Rapid Response for Non-Native Bark and Ambrosia Beetles (Washington, D.C., 2008).

Download references

Acknowledgements

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBRE202505).

Funding

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBRE202505).

Author information

Author notes
  1. Jong-Won Baek and Jung-Il Kim contributed equally to this work.

Authors and Affiliations

  1. Biotechnology Major, Sangmyung University, Seoul, 03016, Korea

    Jong-Won Baek, Min-Ho Mun & Chang-Bae Kim

  2. Ocean Climate Response and Ecosystem Research Department, Korea Institute of Ocean Science and Technology, Busan, 49111, Korea

    Jung-Il Kim

Authors
  1. Jong-Won Baek
    View author publications

    Search author on:PubMed Google Scholar

  2. Jung-Il Kim
    View author publications

    Search author on:PubMed Google Scholar

  3. Min-Ho Mun
    View author publications

    Search author on:PubMed Google Scholar

  4. Chang-Bae Kim
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.W.B., J.I.K., and C.B.K. conceptualized the study and wrote the first draft of the manuscript, J.W.B, J.I.K., and M.H.M performed research and analyzed data, and C.B.K. revised the final draft of the manuscript.

Corresponding author

Correspondence to Chang-Bae Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, JW., Kim, JI., Mun, MH. et al. Hyperparameter optimization to enhance the performance of deep learning models for the early detection of invasive turtles in Korea. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37636-2

Download citation

  • Received: 14 August 2025

  • Accepted: 23 January 2026

  • Published: 06 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-37636-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Invasive turtle
  • Early detection
  • Deep learning
  • Object detection
  • Hyperparameter optimization
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene