Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
The mTOR signaling pathway regulates key steps of mammary gland organoid genesis in a temporal manner
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 30 January 2026

The mTOR signaling pathway regulates key steps of mammary gland organoid genesis in a temporal manner

  • Aurélie Lacouture1,2,3,4,
  • Mame Sokhna Sylla1,2,3,4,
  • Lucas Germain1,2,3,4,
  • Louis Fréville1,3,4,
  • Camille Lafront1,2,3,4,
  • Cindy Weidmann1,3,4,
  • Cynthia Jobin1,3,4,
  • Mathieu Laplante3,5,6,7,
  • Marc-Étienne Huot3,8,9,
  • Jean-Philippe Lambert1,2,3,5 &
  • …
  • Étienne Audet-Walsh1,2,3,4,10 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Developmental biology
  • Endocrine system and metabolic diseases
  • Endocrinology
  • Morphogenesis

Abstract

The development of the mammary gland is a complex process that evolves throughout life. It can undergo drastic changes to support lactation, before involuting back to a rudimentary organ after weaning, in a perfectly orchestrated mechanism. This study aimed to identify the pathways coordinating mammary gland organogenesis, using mouse organoids as a model. In developmental assays, the mechanistic target of rapamycin (mTOR) was shown to be a regulator of cellular lineage determination and branching morphogenesis, acting in a time-dependent manner to control these processes. Indeed, mTOR inhibition during the initial growth phase of organoids abrogated the presence of basal epithelial cells, forcing the expansion of the luminal compartment. At later time points during development, mTOR inhibition promoted branching morphogenesis, increasing the organoid capacity to generate branching/buds. Mechanistically, the mTOR signalling inhibition led to alterations in the expression levels of genes and proteins connected to branching morphogenesis, extracellular matrix remodelling, metabolism, and cell migration. Altogether, this study demonstrates the regulatory functions of mTOR in controlling mammary epithelial cells’ capacity to generate organoids.

Data availability

The omics datasets generated during the current study were deposited in public repositories. For proteomics data, they were assigned MassIVE number MSV000100067 (http://massive.ucsd.edu). For RNA-seq data, they were deposited on the Gene Expression Omnibus (GEO) repository (https://www.ncbi.nlm.nih.gov/geo) and were assigned the number GSE298518.

References

  1. Rauner, G. Using organoids to tap mammary gland diversity for novel insight. J. Mammary Gland Biol. Neoplasia. 29, 7. https://doi.org/10.1007/s10911-024-09559-z (2024).

    Google Scholar 

  2. Watson, C. J. Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res. 8, 203. https://doi.org/10.1186/bcr1401 (2006).

    Google Scholar 

  3. Majumder, S. et al. Divergent paths of mammary gland involution: unveiling the cellular dynamics in abruptly and gradually involuted mouse models. Breast Cancer Res. 27, 1. https://doi.org/10.1186/s13058-024-01933-3 (2025).

    Google Scholar 

  4. Macias, H. & Hinck, L. Mammary gland development. WIREs Dev. Biol. 1, 533–557. https://doi.org/10.1002/wdev.35 (2012).

    Google Scholar 

  5. Hannan, F. M., Elajnaf, T., Vandenberg, L. N., Kennedy, S. H. & Thakker, R. V. Hormonal regulation of mammary gland development and lactation. Nat. Rev. Endocrinol. 19, 46–61. https://doi.org/10.1038/s41574-022-00742-y (2023).

    Google Scholar 

  6. Arendt, L. M. & Kuperwasser, C. Form and function: how Estrogen and progesterone regulate the mammary epithelial hierarchy. J. Mammary Gland Biol. Neoplasia. 20, 9–25. https://doi.org/10.1007/s10911-015-9337-0 (2015).

    Google Scholar 

  7. Manavathi, B., Samanthapudi, V. S. K. & Gajulapalli, V. N. R. Estrogen receptor coregulators and pioneer factors: the orchestrators of mammary gland cell fate and development. Front. Cell. Dev. Biol. 2. https://doi.org/10.3389/fcell.2014.00034 (2014).

    Google Scholar 

  8. Palaniappan, M. et al. The genomic landscape of Estrogen receptor α binding sites in mouse mammary gland. PLoS ONE. 14, e0220311. https://doi.org/10.1371/journal.pone.0220311 (2019).

    Google Scholar 

  9. Walker, V. R. & Korach, K. S. Estrogen receptor knockout mice as a model for endocrine research. ILAR J. 45, 455–461. https://doi.org/10.1093/ilar.45.4.455 (2004).

    Google Scholar 

  10. Lacouture, A. et al. A FACS-Free purification method to study Estrogen Signaling, organoid Formation, and metabolic reprogramming in mammary epithelial cells. Front. Endocrinol. 12, 672466. https://doi.org/10.3389/fendo.2021.672466 (2021).

    Google Scholar 

  11. Lacouture, A. et al. Estrogens and endocrine-disrupting chemicals differentially impact the bioenergetic fluxes of mammary epithelial cells in two- and three-dimensional models. Environ. Int. 179, 108132. https://doi.org/10.1016/j.envint.2023.108132 (2023).

    Google Scholar 

  12. Caruso, M., Huang, S., Mourao, L. & Scheele, C. L. G. J. A mammary organoid model to study branching morphogenesis. Front. Physiol. 13, 826107. https://doi.org/10.3389/fphys.2022.826107 (2022).

    Google Scholar 

  13. Sahu, S. et al. Growth factor dependency in mammary organoids regulates ductal morphogenesis during organ regeneration. Sci. Rep. 12, 7200. https://doi.org/10.1038/s41598-022-11224-6 (2022).

    Google Scholar 

  14. Merle, C. et al. Transcriptional landscapes underlying Notch-induced lineage conversion and plasticity of mammary basal cells. EMBO J. https://doi.org/10.1038/s44318-025-00424-1 (2025).

    Google Scholar 

  15. Ortiz, J. R. et al. Single-Cell transcription mapping of murine and human mammary organoids responses to female hormones. J. Mammary Gland Biol. Neoplasia. 29, 3. https://doi.org/10.1007/s10911-023-09553-x (2024).

    Google Scholar 

  16. Winkler, J. et al. Bisphenol A replacement chemicals, BPF and BPS, induce protumorigenic changes in human mammary gland organoid morphology and proteome. Proc. Natl. Acad. Sci. U S A. 119, e2115308119. https://doi.org/10.1073/pnas.2115308119 (2022).

    Google Scholar 

  17. Kim, H. Y., Sinha, I., Sears, K. E., Kuperwasser, C. & Rauner, G. Expanding the evo-devo toolkit: generation of 3D mammary tissue from diverse mammals. Development 151, dev202134. https://doi.org/10.1242/dev.202134 (2024).

    Google Scholar 

  18. Ben-Sahra, I. & Manning, B. D. mTORC1 signaling and the metabolic control of cell growth. Curr. Opin. Cell. Biol. 45, 72–82. https://doi.org/10.1016/j.ceb.2017.02.012 (2017).

    Google Scholar 

  19. Caron, A., Briscoe, D. M., Richard, D. & Laplante, M. DEPTOR at the nexus of Cancer, Metabolism, and immunity. Physiol. Rev. 98, 1765–1803. https://doi.org/10.1152/physrev.00064.2017 (2018).

    Google Scholar 

  20. Panwar, V. et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Sig Transduct. Target. Ther. 8, 1–25. https://doi.org/10.1038/s41392-023-01608-z (2023).

    Google Scholar 

  21. Laplante, M. & Sabatini, D. M. mTOR signaling at a glance. J. Cell Sci. 122, 3589–3594. https://doi.org/10.1242/jcs.051011 (2009).

    Google Scholar 

  22. Morrison, M. M. et al. mTOR directs breast morphogenesis through the PKC-alpha-Rac1 signaling axis. PLoS Genet. 11, e1005291. https://doi.org/10.1371/journal.pgen.1005291 (2015).

    Google Scholar 

  23. Zhang, R. et al. Th-POK regulates mammary gland lactation through mTOR-SREBP pathway. PLoS Genet. 14, e1007211. https://doi.org/10.1371/journal.pgen.1007211 (2018).

    Google Scholar 

  24. Jankiewicz, M., Groner, B. & Desrivières, S. Mammalian target of Rapamycin regulates the growth of mammary epithelial cells through the inhibitor of deoxyribonucleic acid binding Id1 and their functional differentiation through Id2. Mol. Endocrinol. 20, 2369–2381. https://doi.org/10.1210/me.2006-0071 (2006).

    Google Scholar 

  25. Thoreen, C. C. et al. An ATP-competitive mammalian target of Rapamycin inhibitor reveals Rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023–8032. https://doi.org/10.1074/jbc.M900301200 (2009).

    Google Scholar 

  26. Sarbassov, D. D. et al. Prolonged Rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell. 22, 159–168. https://doi.org/10.1016/j.molcel.2006.03.029 (2006).

    Google Scholar 

  27. Norman, A. W. & Henry, H. L. Hormones of Pregnancy, Parturition and Lactation. In: Hormones (Elsevier), 297–320 https://doi.org/10.1016/B978-0-08-091906-5.00014-8 (2015).

  28. Audet-Walsh, É. et al. Nuclear mTOR acts as a transcriptional integrator of the androgen signaling pathway in prostate cancer. Genes Dev. 31, 1228–1242. https://doi.org/10.1101/gad.299958.117 (2017).

    Google Scholar 

  29. Dufour, C. R. et al. The mTOR chromatin-bound interactome in prostate cancer. Cell. Rep. 38, 110534. https://doi.org/10.1016/j.celrep.2022.110534 (2022).

    Google Scholar 

  30. Pal, B. et al. Single cell transcriptome atlas of mouse mammary epithelial cells across development. Breast Cancer Res. 23, 69. https://doi.org/10.1186/s13058-021-01445-4 (2021).

    Google Scholar 

  31. Gray, G. K., Girnius, N., Kuiken, H. J., Henstridge, A. Z. & Brugge, J. S. Single-cell and Spatial analyses reveal a tradeoff between murine mammary proliferation and lineage programs associated with endocrine cues. Cell. Rep. 42, 113293. https://doi.org/10.1016/j.celrep.2023.113293 (2023).

    Google Scholar 

  32. Alayev, A. et al. mTORC1 directly phosphorylates and activates ERα upon Estrogen stimulation. Oncogene 35, 3535–3543. https://doi.org/10.1038/onc.2015.414 (2016).

    Google Scholar 

  33. Yu Miao, R. et al. MYB is essential for mammary tumorigenesis. Cancer Res. 71, 7029–7037. https://doi.org/10.1158/0008-5472.CAN-11-1015 (2011).

    Google Scholar 

  34. Wang, X., Angelis, N. & Thein, S. L. MYB - A regulatory factor in hematopoiesis. Gene 665, 6–17. https://doi.org/10.1016/j.gene.2018.04.065 (2018).

    Google Scholar 

  35. Oh, I. H. & Reddy, E. P. The myb gene family in cell growth, differentiation and apoptosis. Oncogene. https://doi.org/10.1038/sj.onc.1202839 (1999).

  36. Ramsay, R. G. & Gonda, T. J. MYB function in normal and cancer cells. Nat. Rev. Cancer. 8, 523–534. https://doi.org/10.1038/nrc2439 (2008).

    Google Scholar 

  37. Xu, J., Chen, Y. & Olopade, O. I. MYC and breast cancer. Genes Cancer. 1, 629–640. https://doi.org/10.1177/1947601910378691 (2010).

    Google Scholar 

  38. Bhin, J. et al. MYC is a clinically significant driver of mTOR inhibitor resistance in breast cancer. J. Exp. Med. 220, e20211743. https://doi.org/10.1084/jem.20211743 (2023).

    Google Scholar 

  39. Blakely, C. M. et al. Developmental stage determines the effects of MYC in the mammary epithelium. Development 132, 1147–1160. https://doi.org/10.1242/dev.01655 (2005).

    Google Scholar 

  40. Frégeau-Proulx, L. et al. Multiple metabolic pathways fuel the truncated Tricarboxylic acid cycle of the prostate to sustain constant citrate production and secretion. Mol. Metabolism. 62, 101516. https://doi.org/10.1016/j.molmet.2022.101516 (2022).

    Google Scholar 

  41. Andrews, S. FastQC A Quality Control tool for High Throughput Sequence Data. Babraham Bioinformatics. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

  42. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048. https://doi.org/10.1093/bioinformatics/btw354 (2016).

    Google Scholar 

  43. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12. https://doi.org/10.14806/ej.17.1.200 (2011).

    Google Scholar 

  44. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527. https://doi.org/10.1038/nbt.3519 (2016).

    Google Scholar 

  45. Love, M. I., Huber, W. & Anders, S. Moderated Estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).

    Google Scholar 

  46. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U S A. 102, 15545–15550. https://doi.org/10.1073/pnas.0506580102 (2005).

    Google Scholar 

  47. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523. https://doi.org/10.1038/s41467-019-09234-6 (2019).

    Google Scholar 

  48. Zhou, G. et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 47, W234–W241. https://doi.org/10.1093/nar/gkz240 (2019).

    Google Scholar 

  49. Lafront, C., Germain, L., Weidmann, C. & Audet-Walsh, É. A systematic study of the impact of estrogens and selective Estrogen receptor modulators on prostate cancer cell proliferation. Sci. Rep. 10, 4024. https://doi.org/10.1038/s41598-020-60844-3 (2020).

    Google Scholar 

  50. Moggridge, S., Sorensen, P. H., Morin, G. B. & Hughes, C. S. Extending the compatibility of the SP3 paramagnetic bead processing approach for proteomics. J. Proteome Res. 17, 1730–1740. https://doi.org/10.1021/acs.jproteome.7b00913 (2018).

    Google Scholar 

  51. Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample Preparation for proteomics experiments. Nat. Protoc. 14, 68–85. https://doi.org/10.1038/s41596-018-0082-x (2019).

    Google Scholar 

  52. Prianichnikov, N. et al. MaxQuant software for ion mobility enhanced shotgun proteomics. Mol. Cell. Proteom. 19, 1058–1069. https://doi.org/10.1074/mcp.TIR119.001720 (2020).

    Google Scholar 

  53. Shah, A. D., Goode, R. J. A., Huang, C., Powell, D. R. & Schittenhelm, R. B. LFQ-Analyst: An Easy-To-Use Interactive Web Platform To Analyze and Visualize Label-Free Proteomics Data Preprocessed with MaxQuant. J. Proteome Res. 19, 204–211. https://doi.org/10.1021/acs.jproteome.9b00496. (2020).

Download references

Acknowledgements

This work was supported by funding to EAW from the National Sciences and Engineering Research Council of Canada (RGPIN-2019-04740). AL had a Ph.D. scholarship from the Fonds de Recherche du Québec-Santé (FRQS). LG had a Ph.D. scholarship from the FRQS and the Centre de recherche sur le cancer de l’Université Laval. CL had a Ph.D. scholarship from the Canadian Institutes of Health Research (CIHR). CJ had a master’s scholarship from the FRQS and the CIHR. EAW holds a Tier 2 Canada Research Chair, and JPL holds a Junior 2 salary award from the FRQS.

Funding

This work was supported by funding to EAW from the National Sciences and Engineering Research Council of Canada, NSERC (RGPIN-2019-04740).

Author information

Authors and Affiliations

  1. Department of molecular medicine Faculty of Medicine, Université Laval, Québec City, Canada

    Aurélie Lacouture, Mame Sokhna Sylla, Lucas Germain, Louis Fréville, Camille Lafront, Cindy Weidmann, Cynthia Jobin, Jean-Philippe Lambert & Étienne Audet-Walsh

  2. Endocrinology - Nephrology Research Division, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada

    Aurélie Lacouture, Mame Sokhna Sylla, Lucas Germain, Camille Lafront, Jean-Philippe Lambert & Étienne Audet-Walsh

  3. Centre de recherche sur le cancer de l Université Laval, Québec City, Canada

    Aurélie Lacouture, Mame Sokhna Sylla, Lucas Germain, Louis Fréville, Camille Lafront, Cindy Weidmann, Cynthia Jobin, Mathieu Laplante, Marc-Étienne Huot, Jean-Philippe Lambert & Étienne Audet-Walsh

  4. Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Université Laval, Québec City, Canada

    Aurélie Lacouture, Mame Sokhna Sylla, Lucas Germain, Louis Fréville, Camille Lafront, Cindy Weidmann, Cynthia Jobin & Étienne Audet-Walsh

  5. PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, 201 Av. du Président-Kennedy, Montréal, QC, H2X 3Y7, Canada

    Mathieu Laplante & Jean-Philippe Lambert

  6. Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada

    Mathieu Laplante

  7. Department of medicine Faculty of Medicine, Université Laval, Québec City, Canada

    Mathieu Laplante

  8. Oncology Research Division, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada

    Marc-Étienne Huot

  9. Department of molecular biology, medical biochemistry, and Pathology, Faculty of Medicine, Université Laval, Québec City, Canada

    Marc-Étienne Huot

  10. Centre de recherche du CHU de Québec , 2705 Boulevard Laurier, room R-4714, Québec City, QC, G1V 4G2, Canada

    Étienne Audet-Walsh

Authors
  1. Aurélie Lacouture
    View author publications

    Search author on:PubMed Google Scholar

  2. Mame Sokhna Sylla
    View author publications

    Search author on:PubMed Google Scholar

  3. Lucas Germain
    View author publications

    Search author on:PubMed Google Scholar

  4. Louis Fréville
    View author publications

    Search author on:PubMed Google Scholar

  5. Camille Lafront
    View author publications

    Search author on:PubMed Google Scholar

  6. Cindy Weidmann
    View author publications

    Search author on:PubMed Google Scholar

  7. Cynthia Jobin
    View author publications

    Search author on:PubMed Google Scholar

  8. Mathieu Laplante
    View author publications

    Search author on:PubMed Google Scholar

  9. Marc-Étienne Huot
    View author publications

    Search author on:PubMed Google Scholar

  10. Jean-Philippe Lambert
    View author publications

    Search author on:PubMed Google Scholar

  11. Étienne Audet-Walsh
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, Aurélie Lacouture, Étienne Audet-Walsh; Methodology, Aurélie Lacouture; Investigation, Aurélie Lacouture, Mame Sokhna Sylla, Lucas Germain, Louis Fréville, Camille Lafront, Cindy Weidmann, Cynthia Jobin, Mathieu Laplante, Marc-Étienne Huot, Jean-Philippe Lambert; Writing—original draft, Aurélie Lacouture, Mame Sokhna Sylla, Lucas Germain, Jean-Philippe Lambert, Étienne Audet-Walsh; Writing—review & editing, Aurélie Lacouture, Mame Sokhna Sylla, Lucas Germain, Louis Fréville, Camille Lafront, Cindy Weidmann, Cynthia Jobin, Mathieu Laplante, Marc-Étienne Huot, Jean-Philippe Lambert and Étienne Audet-Walsh; Supervision, Étienne Audet-Walsh.

Corresponding author

Correspondence to Étienne Audet-Walsh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacouture, A., Sylla, M.S., Germain, L. et al. The mTOR signaling pathway regulates key steps of mammary gland organoid genesis in a temporal manner. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37825-z

Download citation

  • Received: 03 June 2025

  • Accepted: 27 January 2026

  • Published: 30 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-37825-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Organoids
  • MTOR
  • Mammary gland
  • Rapamycin
  • Torin
  • Estrogens
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing