Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Loss-of-function mutations in the melanocortin-2-receptor (mc2r) lead to skin hyperpigmentation in teleost fish
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 04 February 2026

Loss-of-function mutations in the melanocortin-2-receptor (mc2r) lead to skin hyperpigmentation in teleost fish

  • Elisa Barreiro-Docío1 na1,
  • Laura Guerrero-Peña1 na1,
  • Priyanka Soni1,2 na1,
  • Luis Méndez-Martínez1,
  • Carolina Costas-Prado1,
  • Maria Victoria Alvarado3,
  • José Antonio Vázquez4,
  • Lluís Tort5,
  • José Miguel Cerdá-Reverter3 &
  • …
  • Josep Rotllant1 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cell biology
  • Developmental biology
  • Genetics
  • Molecular biology
  • Physiology

Abstract

Melanocortins regulate pigmentation via melanocortin receptors (MCRs), which are highly conserved across vertebrates. Unlike other MCRs, the melanocortin 2 receptor (MC2R) is exclusively activated by ACTH; however, its role in pigmentation remains unclear. Using CRISPR/Cas9-generated mc2r knockout zebrafish, we demonstrated that the loss of mc2r in zebrafish results in impaired interrenal steroidogenesis and pronounced hyperpigmentation characterized by an increased number of melanophores and xanthophores while preserving normal patterning. Transcriptomic analyses revealed the upregulation of genes involved in melanosome formation, melanin synthesis, lipid metabolism, and carotenoid accumulation. These findings demonstrate that, in addition to controlling steroidogenesis, mc2r plays a key role in pigment cell development and metabolic regulation.

Data availability

The datasets generated and/or analysed during the current study are available in the NCBI’s Gene Expression Omnibus (GEO) repository, [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi and Accession Number: GSE292242] and are also available from the corresponding author upon reasonable request.

References

  1. Brenner, M. & Hearing, V. J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 84, 539 (2008).

    Google Scholar 

  2. Ellis, H. I. Metabolism and solar radiation in dark and white Herons in hot climates. Physiological Zool. 53, 358–372 (1980).

    Google Scholar 

  3. Belk, M. C. & Smith, M. H. Pelage coloration in Oldfield mice (Peromyscus polionotus): antipredator adaptation? J. Mammal. 77, 882–890 (1996).

    Google Scholar 

  4. Protas, M. E. & Patel, N. H. Evolution of coloration patterns. Annu. Rev. Cell Dev. Biol. 24, 425–446 (2008).

    Google Scholar 

  5. Le Douarin, N. M. & Dupin, E. Multipotentiality of the neural crest. Curr. Opin. Genet. Dev. 13, 529–536 (2003).

    Google Scholar 

  6. Barsh, G. S. The genetics of pigmentation: from fancy genes to complex traits. Trends Genet. 12, 299–305 (1996).

    Google Scholar 

  7. Hubbard, J. K., Uy, J. A. C., Hauber, M. E., Hoekstra, H. E. & Safran, R. J. Vertebrate pigmentation: from underlying genes to adaptive function. Trends Genet. 26, 231–239 (2010).

    Google Scholar 

  8. Bagnara, J. T. & Matsumoto, J. Comparative anatomy and physiology of pigment cells in nonmammalian tissues. Pigmentary System: Physiol. Pathophysiology: Second Ed. 11–59 https://doi.org/10.1002/9780470987100.CH2 (2007).

  9. Linnen, C. R. et al. Adaptive evolution of multiple traits through multiple mutations at a single gene. Sci. (New York N Y). 339, 1312–1316 (2013).

    Google Scholar 

  10. Cal, L. et al. Countershading in zebrafish results from an Asip1 controlled dorsoventral gradient of pigment cell differentiation. Sci. Rep. 9, 1–13 (2019).

  11. Hirata, M., Nakamura, K., ichiro, Kanemaru, T., Shibata, Y. & Kondo, S. Pigment cell organization in the hypodermis of zebrafish. Dev. Dynamics: Official Publication Am. Association Anatomists. 227, 497–503 (2003).

    Google Scholar 

  12. Mahalwar, P., Walderich, B., Singh, A. P. & Volhard, C. N. Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish. Sci. (New York N Y). 345, 1362–1364 (2014).

    Google Scholar 

  13. Singh, A. P. Nüsslein-Volhard, C. Zebrafish stripes as a model for vertebrate colour pattern formation. Curr. Biol. 25, R81–R92 (2015).

    Google Scholar 

  14. Gur, D. et al. In situ differentiation of iridophore crystallotypes underlies zebrafish stripe patterning. Nat. Commun. 11, 1–14 (2020).

  15. Irion, U., Singh, A. P. & Nüsslein-Volhard, C. The developmental genetics of vertebrate color pattern formation: lessons from zebrafish. Curr. Top. Dev. Biol. 117, 141–169 (2016).

    Google Scholar 

  16. Nakanishi, S. et al. Nucleotide sequence of cloned cDNA for bovine corticotropin-β-lipotropin precursor. Nat. 278(5703), 423–427 (1979).

  17. Dores, R. M. & Lecaude, S. Trends in the evolution of the Proopiomelanocortin gene. Gen. Comp. Endocrinol. 142, 81–93 (2005).

    Google Scholar 

  18. Cerdá-Reverter, J. M. et al. Fish melanocortin system. Eur. J. Pharmacol. 660, 53–60 (2011).

    Google Scholar 

  19. Cal, L., Suarez-Bregua, P., Cerdá-Reverter, J. M., Braasch, I. & Rotllant, J. Fish pigmentation and the melanocortin system. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 211, 26–33 (2017).

    Google Scholar 

  20. Ollmann, M. M., Lamoreux, M. L., Wilson, B. D. & Barsh, G. S. Interaction of Agouti protein with the melanocortin 1 receptor in vitro and in vivo. Genes Dev. 12, 316 (1998).

    Google Scholar 

  21. Agulleiro, M. J. et al. Role of melanocortin receptor accessory proteins in the function of zebrafish melanocortin receptor type 2. Mol. Cell. Endocrinol. 320, 145–152 (2010).

    Google Scholar 

  22. Munckt, A., Guyre, P. M. & Holbrooke, N. J. Physiological Functions of Glucocorticoids in Stress and Their Relation to Pharmacological Actions* Introduction and Background. 5 (1984).

  23. Aluru, N. & Vijayan, M. M. Molecular characterization, tissue-specific expression, and regulation of melanocortin 2 receptor in rainbow trout. Endocrinology 149, 4577–4588 (2008).

    Google Scholar 

  24. Fujii, R. The regulation of motile activity in fish chromatophores. Pigment Cell Res. 13, 300–319 (2000).

    Google Scholar 

  25. Liu, S. P. et al. A rare homozygous variant of MC2R gene identified in a Chinese family with Familial glucocorticoid deficiency type 1: A case report. Front. Endocrinol. (Lausanne). 14, 1113234 (2023).

    Google Scholar 

  26. Clark, A. J. L., Grossman, A. & McLoughlin, L. Familial glucocorticoid deficiency associated with point mutation in the adrenocorticotropin receptor. Lancet 341, 461–462 (1993).

    Google Scholar 

  27. Chida, D. et al. Melanocortin 2 receptor is required for adrenal gland development, steroidogenesis, and neonatal gluconeogenesis. Proc. Natl. Acad. Sci. U S A. 104, 18205–18210 (2007).

    Google Scholar 

  28. Cone, R. D. Studies on the physiological functions of the melanocortin system. Endocr. Rev. 27, 736–749 (2006).

    Google Scholar 

  29. Ramachandrappa, S., Gorrigan, R. J., Clark, A. J. L. & Chan, L. F. The melanocortin receptors and their accessory proteins. Front. Endocrinol. 4, 40048 (2013).

    Google Scholar 

  30. Smits, A. H. et al. Biological plasticity rescues target activity in CRISPR knock outs. Nat. Methods. 16, 1087–1093 (2019).

    Google Scholar 

  31. Khan, U. W. et al. A novel role for pigment genes in the stress response in rainbow trout (Oncorhynchus mykiss). Sci. Rep. 6, 1–11 (2016).

  32. Kittilsen, S. et al. Melanin-based skin spots reflect stress responsiveness in salmonid fish. Horm. Behav. 56, 292–298 (2009).

    Google Scholar 

  33. Clark, A. J. L., Grossman, A. & McLoughlin, L. Familial glucocorticoid deficiency associated with point mutation in the adrenocorticotropin receptor. Lancet (London England). 341, 461–462 (1993).

    Google Scholar 

  34. Frohnhöfer, H. G., Krauss, J., Maischein, H. M. & Nüsslein-Volhard, C. Iridophores and their interactions with other chromatophores are required for Stripe formation in zebrafish. Dev. (Cambridge). 140, 2997–3007 (2013).

    Google Scholar 

  35. Watanabe, M. & Kondo, S. Is pigment patterning in fish skin determined by the turing mechanism? Trends Genet. 31, 88–96 (2015).

    Google Scholar 

  36. Nakamasu, A., Takahashi, G., Kanbe, A. & Kondo, S. Interactions between zebrafish pigment cells responsible for the generation of turing patterns. Proc. Natl. Acad. Sci. U.S.A. 106, 8429–8434 (2009).

    Google Scholar 

  37. Lu, D. et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nat. 371(6500), 799–802 (1994).

  38. Le Pape, E. et al. Microarray analysis sheds light on the dedifferentiating role of Agouti signal protein in murine melanocytes via the Mc1r. Proc. Natl. Acad. Sci. U.S.A. 106, 1802–1807 (2009).

    Google Scholar 

  39. Cerdá-Reverter, J. M., Haitina, T., Schiöth, H. B. & Peter, R. E. Gene structure of the goldfish agouti-signaling protein: a putative role in the dorsal-ventral pigment pattern of fish. Endocrinology 146, 1597–1610 (2005).

    Google Scholar 

  40. Fadeev, A., Krauss, J., Frohnhöfer, H. G. & Irion, U. Nüsslein-Volhard, C. Tight junction protein 1a regulates pigment cell organisation during zebrafish colour patterning. eLife 4, 1–25 (2015).

    Google Scholar 

  41. Patterson, L. B. & Parichy, D. M. Zebrafish pigment pattern formation: insights into the development and evolution of adult form. Annu. Rev. Genet. 53, 505–530 (2019).

    Google Scholar 

  42. Jang, H. S. et al. Epigenetic dynamics shaping melanophore and iridophore cell fate in zebrafish. Genome Biol. 22, 1–18 (2021).

    Google Scholar 

  43. TeSlaa, J. J., Keller, A. N., Nyholm, M. K. & Grinblat, Y. Zebrafish Zic2a and Zic2b regulate neural crest and craniofacial development. Dev. Biol. 380, 73–86 (2013).

    Google Scholar 

  44. Bian, C., Li, R., Wen, Z., Ge, W. & Shi, Q. Phylogenetic analysis of core melanin synthesis genes provides novel insights into the molecular basis of albinism in fish. Front. Genet. 12, 707228 (2021).

    Google Scholar 

  45. Higdon, C. W., Mitra, R. D. & Johnson, S. L. Gene expression analysis of zebrafish Melanocytes, Iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin. PLOS ONE. 8, e67801 (2013).

    Google Scholar 

  46. Sheets, L., Ransom, D. G., Mellgren, E. M., Johnson, S. L. & Schnapp, B. J. Zebrafish melanophilin facilitates melanosome dispersion by regulating dynein. Curr. Biology: CB. 17, 1721–1734 (2007).

    Google Scholar 

  47. Kawamoto, M., Ishii, Y. & Kawata, M. Genetic basis of orange spot formation in the Guppy (Poecilia reticulata). BMC Ecol. Evol. 21, 1–11 (2021).

    Google Scholar 

  48. Kimura, T. et al. Leucophores are similar to xanthophores in their specification and differentiation processes in Medaka. Proc. Natl. Acad. Sci. U.S.A. 111, 7343–7348 (2014).

    Google Scholar 

  49. Nord, H., Dennhag, N., Muck, J. & Von Hofsten, J. Pax7 is required for establishment of the Xanthophore lineage in zebrafish embryos. Mol. Biol. Cell. 27, 1853 (2016).

    Google Scholar 

  50. Saunders, L. M. et al. Thyroid hormone regulates distinct paths to maturation in pigment cell lineages. eLife 8, (2019).

  51. Aman, A. J. et al. Transcriptomic profiling of tissue environments critical for post-embryonic patterning and morphogenesis of zebrafish skin. eLife, 12, (2023).

  52. Bassett, A. R., Tibbit, C., Ponting, C. P. & Liu, J. L. Highly efficient targeted mutagenesis of drosophila with the CRISPR/Cas9 system. Cell. Rep. 4, 220–228 (2013).

    Google Scholar 

  53. Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E. CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research 42, 401–407 (2014).

  54. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29, E45 (2001).

    Google Scholar 

  55. Ramsay, J. M. et al. Whole-body cortisol response of zebrafish to acute net handling stress. Aquaculture 297, 157 (2009).

    Google Scholar 

  56. Cortés, R. et al. Effects of acute handling stress on short-term central expression of orexigenic/anorexigenic genes in zebrafish. Fish. Physiol. Biochem. 44 (1), 257–272 (2018).

    Google Scholar 

  57. Andrews, S. & FastQC: A Quality Control Tool for High throughput Sequence. (2010). https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  58. Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta, 2, (2023).

  59. Dobin, A. et al. Ultrafast universal RNA-seq aligner. Bioinf. 29. STAR, 15–21 (2013).

    Google Scholar 

  60. Anders, S., Pyl, P. T. & Huber, W. HTSeq-A python framework to work with high-throughput sequencing data. Bioinformatics https://doi.org/10.1093/bioinformatics/btu638 (2015).

    Google Scholar 

  61. Chen, Y., Chen, L., Lun, A. T. L., Baldoni, P. L. & Smyth, G. K. EdgeR 4.0: powerful differential analysis of sequencing data with expanded functionality and improved support for small counts and larger datasets. BioRxiv https://doi.org/10.1101/2024.01.21.576131 (2024).

    Google Scholar 

  62. Yu, G., Wang, L. G., Han, Y., He, Q. Y. & ClusterProfiler An R package for comparing biological themes among gene clusters. OMICS J. Integr. Biology. 16, 284–287 (2012).

    Google Scholar 

  63. Aman, A. J. et al. Transcriptomic profiling of tissue environments critical for post-embryonic patterning and morphogenesis of zebrafish skin. eLife (2023). https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE224695

  64. Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 1–9 (2019).

  65. Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H. UpSet: visualization of intersecting sets. IEEE Trans. Vis. Comput. Graph. 20, 1983–1992 (2014).

    Google Scholar 

  66. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Google Scholar 

Download references

Acknowledgements

The authors thank to Lucía Sanchez-Ruiloba from the Advanced Microscopy and Imaging Service at IIM-CSIC for their invaluable assistance and expertise in microscopy, and Ms. Susana Otero for maintenance of the experimental animals and assistance during sampling.

Funding

Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This research was funded by the MCIN/AEI/https://doi.org/10.13039/501100011033 grant number AGL2017-89648P, ERDF A way of making Europe” and by PID2021-1236511OB-100 to Josep Rotllant and PID2022-136288OB-C33 to José Miguel Cerda-Reverter. Elisa Barreiro-Docío was a recipient of a JAE-Intro-ICU programme fellowship from the Spanish National Research Council (CSIC).

Author information

Author notes
  1. These authors contributed equally to this work: Elisa Barreiro-Docío, Laura Guerrero-Peña and Priyanka Soni.

Authors and Affiliations

  1. Aquatic Biotechnology Lab, Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), Vigo, Galicia, Spain

    Elisa Barreiro-Docío, Laura Guerrero-Peña, Priyanka Soni, Luis Méndez-Martínez, Carolina Costas-Prado & Josep Rotllant

  2. Department of Earth Science, University of Southern California, Los Angeles, CA, USA

    Priyanka Soni

  3. Fish NeuroBehaviour Lab, Department of Fish Physiology and Biotechnology, Institute of Aquaculture from Torre la Sal (IATS-CSIC), Castellon, Spain

    Maria Victoria Alvarado & José Miguel Cerdá-Reverter

  4. Grupo de Reciclado y Valorización de Residuos (REVAL), Instituto de Investigacións Mariñas, Consejo Superior de Investigaciones Científicas (IIM- CSIC), Vigo, Galicia, Spain

    José Antonio Vázquez

  5. Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra, Spain

    Lluís Tort

Authors
  1. Elisa Barreiro-Docío
    View author publications

    Search author on:PubMed Google Scholar

  2. Laura Guerrero-Peña
    View author publications

    Search author on:PubMed Google Scholar

  3. Priyanka Soni
    View author publications

    Search author on:PubMed Google Scholar

  4. Luis Méndez-Martínez
    View author publications

    Search author on:PubMed Google Scholar

  5. Carolina Costas-Prado
    View author publications

    Search author on:PubMed Google Scholar

  6. Maria Victoria Alvarado
    View author publications

    Search author on:PubMed Google Scholar

  7. José Antonio Vázquez
    View author publications

    Search author on:PubMed Google Scholar

  8. Lluís Tort
    View author publications

    Search author on:PubMed Google Scholar

  9. José Miguel Cerdá-Reverter
    View author publications

    Search author on:PubMed Google Scholar

  10. Josep Rotllant
    View author publications

    Search author on:PubMed Google Scholar

Contributions

E.B.D. Writing-original draft, Visualization, Methodology, Formal analysis, Data curation. L.G.P. Writing-original draft, Methodology, Formal analysis, Data curation. P.S. Writing-original draft, Methodology and Experimentation. L.M.M. Writing-Review and Editing, Methodology and Experimentation. C.C.P. Methodology and Experimentation. M.V.A Methodology and Experimentation. J.A.V. Writing-Review and Editing. L.T. Writing-Review and Editing, Methodology and Experimentation. J.M.C.R. Writing-Review and Editing, Conceptualization, Funding acquisition. J.R. Writing-Review and Editing, Conceptualization, Methodology, Resources, Funding acquisition. All authors reviewed and approved the final version.

Corresponding author

Correspondence to Josep Rotllant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreiro-Docío, E., Guerrero-Peña, L., Soni, P. et al. Loss-of-function mutations in the melanocortin-2-receptor (mc2r) lead to skin hyperpigmentation in teleost fish. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37998-7

Download citation

  • Received: 28 August 2025

  • Accepted: 28 January 2026

  • Published: 04 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-37998-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Mc2r
  • Knockout
  • Melanocortin
  • Pigmentation
  • Steroidogenesis
  • Zebrafish
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing