Abstract
Melanocortins regulate pigmentation via melanocortin receptors (MCRs), which are highly conserved across vertebrates. Unlike other MCRs, the melanocortin 2 receptor (MC2R) is exclusively activated by ACTH; however, its role in pigmentation remains unclear. Using CRISPR/Cas9-generated mc2r knockout zebrafish, we demonstrated that the loss of mc2r in zebrafish results in impaired interrenal steroidogenesis and pronounced hyperpigmentation characterized by an increased number of melanophores and xanthophores while preserving normal patterning. Transcriptomic analyses revealed the upregulation of genes involved in melanosome formation, melanin synthesis, lipid metabolism, and carotenoid accumulation. These findings demonstrate that, in addition to controlling steroidogenesis, mc2r plays a key role in pigment cell development and metabolic regulation.
Data availability
The datasets generated and/or analysed during the current study are available in the NCBI’s Gene Expression Omnibus (GEO) repository, [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi and Accession Number: GSE292242] and are also available from the corresponding author upon reasonable request.
References
Brenner, M. & Hearing, V. J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 84, 539 (2008).
Ellis, H. I. Metabolism and solar radiation in dark and white Herons in hot climates. Physiological Zool. 53, 358–372 (1980).
Belk, M. C. & Smith, M. H. Pelage coloration in Oldfield mice (Peromyscus polionotus): antipredator adaptation? J. Mammal. 77, 882–890 (1996).
Protas, M. E. & Patel, N. H. Evolution of coloration patterns. Annu. Rev. Cell Dev. Biol. 24, 425–446 (2008).
Le Douarin, N. M. & Dupin, E. Multipotentiality of the neural crest. Curr. Opin. Genet. Dev. 13, 529–536 (2003).
Barsh, G. S. The genetics of pigmentation: from fancy genes to complex traits. Trends Genet. 12, 299–305 (1996).
Hubbard, J. K., Uy, J. A. C., Hauber, M. E., Hoekstra, H. E. & Safran, R. J. Vertebrate pigmentation: from underlying genes to adaptive function. Trends Genet. 26, 231–239 (2010).
Bagnara, J. T. & Matsumoto, J. Comparative anatomy and physiology of pigment cells in nonmammalian tissues. Pigmentary System: Physiol. Pathophysiology: Second Ed. 11–59 https://doi.org/10.1002/9780470987100.CH2 (2007).
Linnen, C. R. et al. Adaptive evolution of multiple traits through multiple mutations at a single gene. Sci. (New York N Y). 339, 1312–1316 (2013).
Cal, L. et al. Countershading in zebrafish results from an Asip1 controlled dorsoventral gradient of pigment cell differentiation. Sci. Rep. 9, 1–13 (2019).
Hirata, M., Nakamura, K., ichiro, Kanemaru, T., Shibata, Y. & Kondo, S. Pigment cell organization in the hypodermis of zebrafish. Dev. Dynamics: Official Publication Am. Association Anatomists. 227, 497–503 (2003).
Mahalwar, P., Walderich, B., Singh, A. P. & Volhard, C. N. Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish. Sci. (New York N Y). 345, 1362–1364 (2014).
Singh, A. P. Nüsslein-Volhard, C. Zebrafish stripes as a model for vertebrate colour pattern formation. Curr. Biol. 25, R81–R92 (2015).
Gur, D. et al. In situ differentiation of iridophore crystallotypes underlies zebrafish stripe patterning. Nat. Commun. 11, 1–14 (2020).
Irion, U., Singh, A. P. & Nüsslein-Volhard, C. The developmental genetics of vertebrate color pattern formation: lessons from zebrafish. Curr. Top. Dev. Biol. 117, 141–169 (2016).
Nakanishi, S. et al. Nucleotide sequence of cloned cDNA for bovine corticotropin-β-lipotropin precursor. Nat. 278(5703), 423–427 (1979).
Dores, R. M. & Lecaude, S. Trends in the evolution of the Proopiomelanocortin gene. Gen. Comp. Endocrinol. 142, 81–93 (2005).
Cerdá-Reverter, J. M. et al. Fish melanocortin system. Eur. J. Pharmacol. 660, 53–60 (2011).
Cal, L., Suarez-Bregua, P., Cerdá-Reverter, J. M., Braasch, I. & Rotllant, J. Fish pigmentation and the melanocortin system. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 211, 26–33 (2017).
Ollmann, M. M., Lamoreux, M. L., Wilson, B. D. & Barsh, G. S. Interaction of Agouti protein with the melanocortin 1 receptor in vitro and in vivo. Genes Dev. 12, 316 (1998).
Agulleiro, M. J. et al. Role of melanocortin receptor accessory proteins in the function of zebrafish melanocortin receptor type 2. Mol. Cell. Endocrinol. 320, 145–152 (2010).
Munckt, A., Guyre, P. M. & Holbrooke, N. J. Physiological Functions of Glucocorticoids in Stress and Their Relation to Pharmacological Actions* Introduction and Background. 5 (1984).
Aluru, N. & Vijayan, M. M. Molecular characterization, tissue-specific expression, and regulation of melanocortin 2 receptor in rainbow trout. Endocrinology 149, 4577–4588 (2008).
Fujii, R. The regulation of motile activity in fish chromatophores. Pigment Cell Res. 13, 300–319 (2000).
Liu, S. P. et al. A rare homozygous variant of MC2R gene identified in a Chinese family with Familial glucocorticoid deficiency type 1: A case report. Front. Endocrinol. (Lausanne). 14, 1113234 (2023).
Clark, A. J. L., Grossman, A. & McLoughlin, L. Familial glucocorticoid deficiency associated with point mutation in the adrenocorticotropin receptor. Lancet 341, 461–462 (1993).
Chida, D. et al. Melanocortin 2 receptor is required for adrenal gland development, steroidogenesis, and neonatal gluconeogenesis. Proc. Natl. Acad. Sci. U S A. 104, 18205–18210 (2007).
Cone, R. D. Studies on the physiological functions of the melanocortin system. Endocr. Rev. 27, 736–749 (2006).
Ramachandrappa, S., Gorrigan, R. J., Clark, A. J. L. & Chan, L. F. The melanocortin receptors and their accessory proteins. Front. Endocrinol. 4, 40048 (2013).
Smits, A. H. et al. Biological plasticity rescues target activity in CRISPR knock outs. Nat. Methods. 16, 1087–1093 (2019).
Khan, U. W. et al. A novel role for pigment genes in the stress response in rainbow trout (Oncorhynchus mykiss). Sci. Rep. 6, 1–11 (2016).
Kittilsen, S. et al. Melanin-based skin spots reflect stress responsiveness in salmonid fish. Horm. Behav. 56, 292–298 (2009).
Clark, A. J. L., Grossman, A. & McLoughlin, L. Familial glucocorticoid deficiency associated with point mutation in the adrenocorticotropin receptor. Lancet (London England). 341, 461–462 (1993).
Frohnhöfer, H. G., Krauss, J., Maischein, H. M. & Nüsslein-Volhard, C. Iridophores and their interactions with other chromatophores are required for Stripe formation in zebrafish. Dev. (Cambridge). 140, 2997–3007 (2013).
Watanabe, M. & Kondo, S. Is pigment patterning in fish skin determined by the turing mechanism? Trends Genet. 31, 88–96 (2015).
Nakamasu, A., Takahashi, G., Kanbe, A. & Kondo, S. Interactions between zebrafish pigment cells responsible for the generation of turing patterns. Proc. Natl. Acad. Sci. U.S.A. 106, 8429–8434 (2009).
Lu, D. et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nat. 371(6500), 799–802 (1994).
Le Pape, E. et al. Microarray analysis sheds light on the dedifferentiating role of Agouti signal protein in murine melanocytes via the Mc1r. Proc. Natl. Acad. Sci. U.S.A. 106, 1802–1807 (2009).
Cerdá-Reverter, J. M., Haitina, T., Schiöth, H. B. & Peter, R. E. Gene structure of the goldfish agouti-signaling protein: a putative role in the dorsal-ventral pigment pattern of fish. Endocrinology 146, 1597–1610 (2005).
Fadeev, A., Krauss, J., Frohnhöfer, H. G. & Irion, U. Nüsslein-Volhard, C. Tight junction protein 1a regulates pigment cell organisation during zebrafish colour patterning. eLife 4, 1–25 (2015).
Patterson, L. B. & Parichy, D. M. Zebrafish pigment pattern formation: insights into the development and evolution of adult form. Annu. Rev. Genet. 53, 505–530 (2019).
Jang, H. S. et al. Epigenetic dynamics shaping melanophore and iridophore cell fate in zebrafish. Genome Biol. 22, 1–18 (2021).
TeSlaa, J. J., Keller, A. N., Nyholm, M. K. & Grinblat, Y. Zebrafish Zic2a and Zic2b regulate neural crest and craniofacial development. Dev. Biol. 380, 73–86 (2013).
Bian, C., Li, R., Wen, Z., Ge, W. & Shi, Q. Phylogenetic analysis of core melanin synthesis genes provides novel insights into the molecular basis of albinism in fish. Front. Genet. 12, 707228 (2021).
Higdon, C. W., Mitra, R. D. & Johnson, S. L. Gene expression analysis of zebrafish Melanocytes, Iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin. PLOS ONE. 8, e67801 (2013).
Sheets, L., Ransom, D. G., Mellgren, E. M., Johnson, S. L. & Schnapp, B. J. Zebrafish melanophilin facilitates melanosome dispersion by regulating dynein. Curr. Biology: CB. 17, 1721–1734 (2007).
Kawamoto, M., Ishii, Y. & Kawata, M. Genetic basis of orange spot formation in the Guppy (Poecilia reticulata). BMC Ecol. Evol. 21, 1–11 (2021).
Kimura, T. et al. Leucophores are similar to xanthophores in their specification and differentiation processes in Medaka. Proc. Natl. Acad. Sci. U.S.A. 111, 7343–7348 (2014).
Nord, H., Dennhag, N., Muck, J. & Von Hofsten, J. Pax7 is required for establishment of the Xanthophore lineage in zebrafish embryos. Mol. Biol. Cell. 27, 1853 (2016).
Saunders, L. M. et al. Thyroid hormone regulates distinct paths to maturation in pigment cell lineages. eLife 8, (2019).
Aman, A. J. et al. Transcriptomic profiling of tissue environments critical for post-embryonic patterning and morphogenesis of zebrafish skin. eLife, 12, (2023).
Bassett, A. R., Tibbit, C., Ponting, C. P. & Liu, J. L. Highly efficient targeted mutagenesis of drosophila with the CRISPR/Cas9 system. Cell. Rep. 4, 220–228 (2013).
Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E. CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research 42, 401–407 (2014).
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29, E45 (2001).
Ramsay, J. M. et al. Whole-body cortisol response of zebrafish to acute net handling stress. Aquaculture 297, 157 (2009).
Cortés, R. et al. Effects of acute handling stress on short-term central expression of orexigenic/anorexigenic genes in zebrafish. Fish. Physiol. Biochem. 44 (1), 257–272 (2018).
Andrews, S. & FastQC: A Quality Control Tool for High throughput Sequence. (2010). https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta, 2, (2023).
Dobin, A. et al. Ultrafast universal RNA-seq aligner. Bioinf. 29. STAR, 15–21 (2013).
Anders, S., Pyl, P. T. & Huber, W. HTSeq-A python framework to work with high-throughput sequencing data. Bioinformatics https://doi.org/10.1093/bioinformatics/btu638 (2015).
Chen, Y., Chen, L., Lun, A. T. L., Baldoni, P. L. & Smyth, G. K. EdgeR 4.0: powerful differential analysis of sequencing data with expanded functionality and improved support for small counts and larger datasets. BioRxiv https://doi.org/10.1101/2024.01.21.576131 (2024).
Yu, G., Wang, L. G., Han, Y., He, Q. Y. & ClusterProfiler An R package for comparing biological themes among gene clusters. OMICS J. Integr. Biology. 16, 284–287 (2012).
Aman, A. J. et al. Transcriptomic profiling of tissue environments critical for post-embryonic patterning and morphogenesis of zebrafish skin. eLife (2023). https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE224695
Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 1–9 (2019).
Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H. UpSet: visualization of intersecting sets. IEEE Trans. Vis. Comput. Graph. 20, 1983–1992 (2014).
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).
Acknowledgements
The authors thank to Lucía Sanchez-Ruiloba from the Advanced Microscopy and Imaging Service at IIM-CSIC for their invaluable assistance and expertise in microscopy, and Ms. Susana Otero for maintenance of the experimental animals and assistance during sampling.
Funding
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This research was funded by the MCIN/AEI/https://doi.org/10.13039/501100011033 grant number AGL2017-89648P, ERDF A way of making Europe” and by PID2021-1236511OB-100 to Josep Rotllant and PID2022-136288OB-C33 to José Miguel Cerda-Reverter. Elisa Barreiro-Docío was a recipient of a JAE-Intro-ICU programme fellowship from the Spanish National Research Council (CSIC).
Author information
Authors and Affiliations
Contributions
E.B.D. Writing-original draft, Visualization, Methodology, Formal analysis, Data curation. L.G.P. Writing-original draft, Methodology, Formal analysis, Data curation. P.S. Writing-original draft, Methodology and Experimentation. L.M.M. Writing-Review and Editing, Methodology and Experimentation. C.C.P. Methodology and Experimentation. M.V.A Methodology and Experimentation. J.A.V. Writing-Review and Editing. L.T. Writing-Review and Editing, Methodology and Experimentation. J.M.C.R. Writing-Review and Editing, Conceptualization, Funding acquisition. J.R. Writing-Review and Editing, Conceptualization, Methodology, Resources, Funding acquisition. All authors reviewed and approved the final version.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Barreiro-Docío, E., Guerrero-Peña, L., Soni, P. et al. Loss-of-function mutations in the melanocortin-2-receptor (mc2r) lead to skin hyperpigmentation in teleost fish. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37998-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-37998-7