Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Learning-aided Artificial Bee Colony with neural knowledge transfer for global optimization
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

Learning-aided Artificial Bee Colony with neural knowledge transfer for global optimization

  • Gurmeet Saini1,
  • Shimpi Singh Jadon1 &
  • Shshank Chaube2 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Engineering
  • Mathematics and computing

Abstract

A critical challenge in swarm intelligence is the effective utilization of knowledge gained during the search, a process often confounded by the risk of negative knowledge transfer. To address this, we introduce the Learning-Aided Artificial Bee Colony (LA-ABC), a novel framework guided by a Neural Knowledge Transfer mechanism for global optimization. Our framework establishes a co-evolutionary mechanism between the search process of the ABC algorithm and an online neural knowledge learning engine. LA-ABC operates on a dual-pathway architecture, probabilistically arbitrating between foundational swarm exploration and a knowledge-transfer pathway. In this second pathway, an Artificial Neural Network (ANN) learns a predictive, non-linear model from a dynamic archive of historically successful solutions. This approach enables the model to interpret the complex context of successful moves, thereby preventing the negative knowledge transfer where a beneficial pattern in one region of the search space could be detrimental in another. This learned intelligence is then operationalized through a generative operator that transfers validated positive knowledge to create high-quality candidate solutions. The process transforms the ABC from a memoryless explorer into an intelligent agent that learns to navigate the fitness landscape with high efficacy. The superiority of the LA-ABC framework is demonstrated through comprehensive benchmarking on 23 standard test functions, the competitive IEEE CEC 2019 suite, and a real-world photovoltaic parameter extraction problem. Our proposed neural knowledge transfer approach significantly outperforms 12 state-of-the-art algorithms, including ABC, L-SHADE, JSO, L-DE, L-PSO, KL-variants, and RL variants with the significance of these improvements validated by rigorous statistical tests (Wilcoxon, Bonferroni-Dunn, Friedman, and ANOVA). Ultimately, LA-ABC provides a robust new paradigm for integrating reinforcement learning and knowledge transfer within evolutionary computation.

Data availability

All data genrated or analysed during this study are included in this published article.

References

  1. Back, T. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms, (Oxford university press, 1996).

  2. Li, J.-Y., Zhan, Z.-H. & Zhang, J. Evolutionary computation for expensive optimization: A survey. Machine Intelligence Research 19(1), 3–23 (2022).

    Google Scholar 

  3. Zhan, Z.-H., Shi, L., Tan, K. C. & Zhang, J. A survey on evolutionary computation for complex continuous optimization. Artif. Intell. Rev. 55(1), 59–110 (2022).

    Google Scholar 

  4. Holland, J. H. Genetic algorithms. Sci. Am. 267(1), 66–73 (1992).

    Google Scholar 

  5. Storn, R. & Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997).

    Google Scholar 

  6. Eberhart, R. & Kennedy, J. Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks 2, 1942–1948 (1995).

    Google Scholar 

  7. Karaboga, D. & Basturk, B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J. Global Optim. 39(3), 459–471 (2007).

    Google Scholar 

  8. Chawla, M. & Duhan, M. Applications of recent metaheuristics optimisation algorithms in biomedical engineering: a review. Int. J. Biomed. Eng. Technol. 16(3), 268–278 (2014).

    Google Scholar 

  9. Arias-Montano, A., Coello, C. A. C. & Mezura-Montes, E. Multiobjective evolutionary algorithms in aeronautical and aerospace engineering. IEEE Trans. Evol. Comput. 16(5), 662–694 (2012).

    Google Scholar 

  10. Helmi, A. M., Carli, R., Dotoli, M. & Ramadan, H. S. Efficient and sustainable reconfiguration of distribution networks via metaheuristic optimization. IEEE Trans. Autom. Sci. Eng. 19(1), 82–98 (2021).

    Google Scholar 

  11. Rajwar, K., Deep, K. & Das, S. An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges. Artif. Intell. Rev. 56(11), 13187–13257 (2023).

    Google Scholar 

  12. D. Karaboga, et al., An idea based on honey bee swarm for numerical optimization (2005).

  13. Jin, Y. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm Evol. Comput. 1(2), 61–70 (2011).

    Google Scholar 

  14. Ong, Y. S., Nair, P. B. & Keane, A. J. Evolutionary optimization of computationally expensive problems via surrogate modeling. AIAA J. 41(4), 687–696 (2003).

    Google Scholar 

  15. Zhan, Z.-H., Li, J.-Y., Kwong, S. & Zhang, J. Learning-aided evolution for optimization. IEEE Trans. Evol. Comput. 27(6), 1794–1808 (2022).

    Google Scholar 

  16. Zhang, J. & Sanderson, A. C. Jade: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009).

    Google Scholar 

  17. Zhan, Z.-H., Wang, Z.-J., Jin, H. & Zhang, J. Adaptive distributed differential evolution. IEEE transactions on cybernetics 50(11), 4633–4647 (2019).

    Google Scholar 

  18. J. Brest, M. S. Maučec, B. Bošković, Single objective real-parameter optimization: Algorithm jso, in: 2017 IEEE congress on evolutionary computation (CEC), 1311–1318 (IEEE, 2017).

  19. Lezama, F., Soares, J., Faia, R., & Vale, Z. Hybrid-adaptive differential evolution with decay function (hyde-df) applied to the 100-digit challenge competition on single objective numerical optimization, in: Proceedings of the genetic and evolutionary computation conference companion, 7–8 (2019). 

  20. Liang, J. J., Guo, L., Liu, R., & Qu, B. Y., A self-adaptive dynamic particle swarm optimizer, in: 2015 IEEE Congress on Evolutionary Computation (CEC), 3206–3213 (IEEE, 2015)

  21. Ratnaweera, A., Halgamuge, S. K. & Watson, H. C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004).

    Google Scholar 

  22. Xia, X. et al. Triple archives particle swarm optimization. IEEE transactions on cybernetics 50(12), 4862–4875 (2019).

    Google Scholar 

  23. Liu, W. et al. A novel sigmoid-function-based adaptive weighted particle swarm optimizer. IEEE transactions on cybernetics 51(2), 1085–1093 (2019).

    Google Scholar 

  24. Jiang, Y., Zhan, Z. H., Tan, K. C., & Zhang, J. Knowledge learning for evolutionary computation, IEEE transactions on evolutionary computation (2023).

  25. Tan, K. C., Feng, L. & Jiang, M. Evolutionary transfer optimization-a new frontier in evolutionary computation research. IEEE Comput. Intell. Mag. 16(1), 22–33 (2021).

    Google Scholar 

  26. Xue, X. et al. Solution transfer in evolutionary optimization: An empirical study on sequential transfer. IEEE Trans. Evol. Comput. 28(6), 1776–1793 (2023).

    Google Scholar 

  27. Guo, Y., Chen, G., Jiang, M., Gong, D. & Liang, J. A knowledge guided transfer strategy for evolutionary dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 27(6), 1750–1764 (2022).

    Google Scholar 

  28. Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y., Deep learning, Vol. 1, (MIT press Cambridge, 2016).

  29. Stanley, K. O., Clune, J., Lehman, J. & Miikkulainen, R. Designing neural networks through neuroevolution. Nature Machine Intelligence 1(1), 24–35 (2019).

    Google Scholar 

  30. Burke, E. K. et al. Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research Society 64(12), 1695–1724 (2013).

    Google Scholar 

  31. Li, J.-Y., Zhan, Z.-H., Xu, J., Kwong, S. & Zhang, J. Surrogate-assisted hybrid-model estimation of distribution algorithm for mixed-variable hyperparameters optimization in convolutional neural networks. IEEE Transactions on Neural Networks and Learning Systems 34(5), 2338–2352 (2021).

    Google Scholar 

  32. Xu, D. & Cao, B. Adaptive multiobjective evolutionary generative adversarial network for metaverse network intrusion detection. Research 8, 0665 (2025).

    Google Scholar 

  33. Galván, E. & Mooney, P. Neuroevolution in deep neural networks: Current trends and future challenges. IEEE Transactions on Artificial Intelligence 2(6), 476–493 (2021).

    Google Scholar 

  34. Zhan, Z.-H., Li, J.-Y. & Zhang, J. Evolutionary deep learning: A survey. Neurocomputing 483, 42–58 (2022).

    Google Scholar 

  35. Larrañaga, P., & Bielza, C. Estimation of distribution algorithms in machine learning: a survey, IEEE transactions on evolutionary computation (2023).

  36. Mishra, V. & Kane, L. A survey of designing convolutional neural network using evolutionary algorithms. Artif. Intell. Rev. 56(6), 5095–5132 (2023).

    Google Scholar 

  37. Zhang, J. et al. Evolutionary computation meets machine learning: A survey. IEEE Comput. Intell. Mag. 6(4), 68–75 (2011).

    Google Scholar 

  38. Karaboga, D., Gorkemli, B., Ozturk, C. & Karaboga, N. A comprehensive survey: artificial bee colony (abc) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2014).

    Google Scholar 

  39. Ozturk, C., Karaboga, D. & Hybrid artificial bee colony algorithm for neural network training, in,. IEEE congress of evolutionary computation (CEC). IEEE 2011, 84–88 (2011).

  40. Gao, W.-F. & Liu, S.-Y. A modified artificial bee colony algorithm. Computers & Operations Research 39(3), 687–697 (2012).

    Google Scholar 

  41. Wang, H. et al. Multi-strategy ensemble artificial bee colony algorithm. Inf. Sci. 279, 587–603 (2014).

    Google Scholar 

  42. Kiran, M. S., Hakli, H., Gunduz, M. & Uguz, H. Artificial bee colony algorithm with variable search strategy for continuous optimization. Inf. Sci. 300, 140–157 (2015).

    Google Scholar 

  43. Gao, W.-F. et al. Artificial bee colony algorithm with multiple search strategies. Appl. Math. Comput. 271, 269–287 (2015).

    Google Scholar 

  44. Zhou, X., Wu, Z., Wang, H. & Rahnamayan, S. Gaussian bare-bones artificial bee colony algorithm. Soft. Comput. 20, 907–924 (2016).

    Google Scholar 

  45. Jadon, S. S., Tiwari, R., Sharma, H. & Bansal, J. C. Hybrid artificial bee colony algorithm with differential evolution. Appl. Soft Comput. 58, 11–24 (2017).

    Google Scholar 

  46. Jadon, S. S., Sharma, H., Kumar, E., & Bansal, J. C., Application of binary particle swarm optimization in cryptanalysis of des, in: Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011 1, 1061–1071 (Springer, 2012).

  47. Garg, N., Jadon, S. S., Sharma, H., & Palwalia, Gbest-artificial bee colony algorithm to solve load flow problem, in: Proceedings of the Third International Conference on Soft Computing for Problem Solving: SocProS 2013, 2, 529–538 (Springer, 2014).

  48. Zhou, X., Wang, H., Wang, M. & Wan, J. Enhancing the modified artificial bee colony algorithm with neighborhood search. Soft. Comput. 21(10), 2733–2743 (2017).

    Google Scholar 

  49. Liang, Z., Hu, K., Zhu, Q. & Zhu, Z. An enhanced artificial bee colony algorithm with adaptive differential operators. Appl. Soft Comput. 58, 480–494 (2017).

    Google Scholar 

  50. Kumar, D. & Mishra, K. Portfolio optimization using novel co-variance guided artificial bee colony algorithm. Swarm Evol. Comput. 33, 119–130 (2017).

    Google Scholar 

  51. Jadon, S. S., Bansal, J. C., Tiwari, R. & Sharma, H. Artificial bee colony algorithm with global and local neighborhoods. International Journal of System Assurance Engineering and Management 9, 589–601 (2018).

    Google Scholar 

  52. Jadon, S. S., Sharma, H., Tiwari, R. & Bansal, J. C. Self-adaptive position update in artificial bee colony. International Journal of System Assurance Engineering and Management 9, 802–810 (2018).

    Google Scholar 

  53. Xiang, W.-L., Meng, X.-L., Li, Y.-Z., He, R.-C. & An, M.-Q. An improved artificial bee colony algorithm based on the gravity model. Inf. Sci. 429, 49–71 (2018).

    Google Scholar 

  54. Kumar, D. & Mishra, K. Co-variance guided artificial bee colony. Appl. Soft Comput. 70, 86–107 (2018).

    Google Scholar 

  55. Han, Z., Chen, M., Shao, S. & Wu, Q. Improved artificial bee colony algorithm-based path planning of unmanned autonomous helicopter using multi-strategy evolutionary learning. Aerosp. Sci. Technol. 122, 107374 (2022).

    Google Scholar 

  56. Özdemir, D., Dörterler, S. & Aydın, D. A new modified artificial bee colony algorithm for energy demand forecasting problem. Neural Comput. Appl. 34(20), 17455–17471 (2022).

    Google Scholar 

  57. Zhang, Y., Pang, B., Song, Y., Xu, Q. & Yuan, X. Artificial bee colony algorithm based on dimensional memory mechanism and adaptive elite population for training artificial neural networks. IEEE Access 11, 107616–107637 (2023).

    Google Scholar 

  58. Lamjiak, T., Sirinaovakul, B., Kornthongnimit, S., Polvichai, J. & Sohail, A. Optimizing artificial neural network learning using improved reinforcement learning in artificial bee colony algorithm. Applied Computational Intelligence and Soft Computing 2024(1), 6357270 (2024).

    Google Scholar 

  59. Zhu, F. et al. obabc: a one-dimensional binary artificial bee colony algorithm for binary optimization. Swarm Evol. Comput. 87, 101567 (2024).

    Google Scholar 

  60. Yang, J., Li, W.-T., Shi, X.-W., Xin, L. & Yu, J.-F. A hybrid abc-de algorithm and its application for time-modulated arrays pattern synthesis. IEEE Trans. Antennas Propag. 61(11), 5485–5495 (2013).

    Google Scholar 

  61. Saini, G., & Jadon, S. S. , A comprehensive review of hybrid variants of artificial bee colony algorithm, High-Performance Automation Methods for Computational Intelligent Systems: Challenges, Opportunities, and Applications,  148 (2025).

  62. Gupta, A., Ong, Y.-S. & Feng, L. Multifactorial evolution: Toward evolutionary multitasking. IEEE Trans. Evol. Comput. 20(3), 343–357 (2015).

    Google Scholar 

  63. Zhang, F., Mei, Y., Nguyen, S., Zhang, M. & Tan, K. C. Surrogate-assisted evolutionary multitask genetic programming for dynamic flexible job shop scheduling. IEEE Trans. Evol. Comput. 25(4), 651–665 (2021).

    Google Scholar 

  64. Li, J.-Y., Zhan, Z.-H., Tan, K. C. & Zhang, J. A meta-knowledge transfer-based differential evolution for multitask optimization. IEEE Trans. Evol. Comput. 26(4), 719–734 (2021).

    Google Scholar 

  65. Yokoya, G., Xiao, H., Hatanaka, T. & Multifactorial optimization using artificial bee colony and its application to car structure design optimization, in,. IEEE Congress on Evolutionary Computation (CEC). IEEE 2019, 3404–3409 (2019).

  66. Bian, X. et al. Multitask particle swarm optimization algorithm leveraging variable chunking and local meta-knowledge transfer. Swarm Evol. Comput. 92, 101823 (2025).

    Google Scholar 

  67. Mallipeddi, R., Suganthan, P. N., Pan, Q.-K. & Tasgetiren, M. F. Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011).

    Google Scholar 

  68. Price, K., Awad, N., Ali, M., & Suganthan, P. Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization, in: Technical report, (Nanyang Technological University Singapore, 2018).

  69. Saini, G. & Jadon, S. S. An improved artificial bee colony algorithm based on spider monkey optimization global search for complex benchmarks and engineering applications. Phys. Scr. 100(7), 075229 (2025).

    Google Scholar 

  70. Tanabe, R., Fukunaga, A. S. & Improving the search performance of shade using linear population size reduction, in,. IEEE congress on evolutionary computation (CEC). IEEE 2014, 1658–1665 (2014).

  71. Song, Y. et al. Rl-ga: A reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem. Swarm Evol. Comput. 77, 101236 (2023).

    Google Scholar 

  72. Zhao, F. et al. A multi-agent reinforcement learning driven artificial bee colony algorithm with the central controller. Expert Syst. Appl. 219, 119672 (2023).

    Google Scholar 

  73. Cui, Y., Hu, W. & Rahmani, A. A reinforcement learning based artificial bee colony algorithm with application in robot path planning. Expert Syst. Appl. 203, 117389 (2022).

    Google Scholar 

  74. Li, Y., Gong, W. & Li, S. Multitasking optimization via an adaptive solver multitasking evolutionary framework. Inf. Sci. 630, 688–712 (2023).

    Google Scholar 

  75. Zhang, T., Gong, W. & Li, Y. Multitask differential evolution with adaptive dual knowledge transfer. Appl. Soft Comput. 165, 112040 (2024).

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India, for the necessary support for this research.

Funding

Open access funding provided by Symbiosis International (Deemed University).

Author information

Authors and Affiliations

  1. Department of Applied Sciences, Rajkiya Engineering College Kannauj, Kannauj, 209732, India

    Gurmeet Saini & Shimpi Singh Jadon

  2. Symbiosis Institute of Technology, Hyderabad Campus, Symbiosis International (Deemed University), Pune, India

    Shshank Chaube

Authors
  1. Gurmeet Saini
    View author publications

    Search author on:PubMed Google Scholar

  2. Shimpi Singh Jadon
    View author publications

    Search author on:PubMed Google Scholar

  3. Shshank Chaube
    View author publications

    Search author on:PubMed Google Scholar

Contributions

1.) Gurmeet Saini conceived the core idea of the LA-ABC framework, developed the methodology, carried out the implementation, wrote the main manuscript, and performed the experimental analysis. 2.) Shimpi Singh Jadon supervised the research, provided critical guidance on algorithmic design, and contributed to the interpretation and refinement of results. 3.) Shshank Chaube assisted with experimental validation, statistical analysis, and contributed to manuscript revision. 4.) All authors discussed the results, reviewed the manuscript critically, and approved the final version for submission.

Corresponding authors

Correspondence to Shimpi Singh Jadon or Shshank Chaube.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, G., Jadon, S.S. & Chaube, S. Learning-aided Artificial Bee Colony with neural knowledge transfer for global optimization. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38028-2

Download citation

  • Received: 26 September 2025

  • Accepted: 28 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38028-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Evolutionary computation
  • Swarm intelligence
  • Artificial Bee Colony Algorithm
  • Transfer learning
  • Artificial Neural Network (ANN)
  • Learning-aided evolution
  • Evolutionary transfer optimization
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics