Table 9 The conditions that E3 and E8 are ESS points.

From: Government regulatory policies for digital transformation in small and medium-sized manufacturing enterprises: an evolutionary game analysis

Initial conditions

Additional conditions

The values of eigenvalues

Note

(a) The conditions that E3 and E8 are ESS points when PT ≤ CG + LG

PT < CG + RE + RS + LG, CT < RZT + LT + λδ2/2, RGE > CE

–

\({\it{\lambda }}_1^2 > 0\); \({\it{\lambda }}_3^{\it{i}} < 0\left( {{\it{i}} = 1,2,3} \right)\); \({\it{\lambda }}_7^3 > 0\); \({\it{\lambda }}_2^{\it{i}}\left( {{\it{i}} = 1,3} \right)\) and \({\it{\lambda }}_6^{\it{i}}\left( {{\it{i}} = 1,2,3} \right)\) are uncertain

E3 is an ESS point

PE + PT > RS + CG

PT + RT > CT

\({\it{\lambda }}_1^2 > 0\); \({\it{\lambda }}_3^{\it{i}} < 0\left( {{\it{i}} = 1,2,3} \right)\); \({\it{\lambda }}_{\it{j}}^3 > 0\left( {{\it{j}} = 2,6,7} \right)\)

E3 is the unique ESS point

RGE > CE + λδ2/2

PT < CG + RE + RS + LG, CT < PT + RT + RZT + CT + λδ2/2, RE + PE + RGE > CE

–

\({\it{\lambda }}_8^1 > 0\)

E8 is not an ESS point

(b) The conditions that E3 and E8 are ESS points when PT > CG + LG

PT < CG + RE + RS + LG, CT < RZT + LT + λδ2/2, RGE > CE

–

\({\it{\lambda }}_1^2 > 0\); \({\it{\lambda }}_3^{\it{i}} < 0\left( {{\it{i}} = 1,2,3} \right)\); \({\it{\lambda }}_7^3 > 0\); \({\it{\lambda }}_{\it{j}}^1 > 0\left( {{\it{j}} = 5,8} \right)\); \({\it{\lambda }}_2^{\it{i}}\left( {{\it{i}} = 1,3} \right)\) and \({\it{\lambda }}_6^{\it{i}}\left( {{\it{i}} = 1,2,3} \right)\) are uncertain

E3 is an ESS point

PE + PT > RS + CG

PT + RT > CT

\({\it{\lambda }}_1^2 > 0\); \({\it{\lambda }}_3^{\it{i}} < 0\left( {{\it{i}} = 1,2,3} \right)\); \({\it{\lambda }}_{\it{j}}^3 > 0\left( {{\it{j}} = 2,6,7} \right)\); \({\it{\lambda }}_{\it{j}}^1 > 0\left( {{\it{j}} = 5,8} \right)\)

E3 is the unique ESS point

RGE > CE + λδ2/2

PT > CG + RE + RS + LG, CT < PT + RT + RZT + CT + λδ2/2, RE + PE + RGE > CE

–

\({\it{\lambda }}_1^{\it{i}} > 0\left( {{\it{i}} = 1,2,3} \right)\); \({\it{\lambda }}_5^2 > 0\); \({\it{\lambda }}_6^{\it{i}}\left( {{\it{i}} = 2,3} \right)\) are uncertain;\({\it{\lambda }}_7^3 > 0\); \({\it{\lambda }}_8^{\it{i}} < 0\left( {{\it{i}} = 1,2,3} \right)\)

E8 is an ESS point

PT + RT > CT

\({\it{\lambda }}_1^{\it{i}} > 0\left( {{\it{i}} = 1,2,3} \right)\); \({\it{\lambda }}_{\it{j}}^2 > 0\left( {{\it{j}} = 5,6} \right)\); \({\it{\lambda }}_7^3 > 0\); \({\it{\lambda }}_8^{\it{i}} < 0\left( {{\it{i}} = 1,2,3} \right)\)

E8 is the unique ESS point

RE + PE + RGE > CE + λδ2/2

\({\it{\lambda }}_1^{\it{i}} > 0\left( {{\it{i}} = 1,2,3} \right)\); \({\it{\lambda }}_5^2 > 0\); \({\it{\lambda }}_{\it{j}}^3 > 0\left( {{\it{j}} = 6,7} \right)\); \({\it{\lambda }}_8^{\it{i}} < 0\left( {{\it{i}} = 1,2,3} \right)\)

  1. By analyzing E3 and E8, respectively, we can obtain Propositions 3 and 4.