Table 3 Logistic regression with LASSO regularization algorithm.

From: Determinants of efficient water use and conservation in the Colombian manufacturing industry using machine learning

Predictor

Coefficient

Elasticity

0.filtcertecocapv

−0.4205039

−0.6567158

1. Food, beverages, and tobacco

0.4491343

1.56695509

11. Bogotá

−0.0181282

−0.9820351

13. Bolívar

−0.0393538

−0.9614105

15. Boyacá

−0.0604993

−0.9412944

19. Cauca

0.0604259

1.06228888

2. Coking, manufacture of petroleum refining products and nuclear fuel

0.0723728

1.07505605

20. Cesar

0.0733447

1.07610141

25. Cundinamarca

0.0421088

1.04300795

3. Manufacture of rubber and plastic products.

−0.1663736

−0.8467298

4. Manufacture of chemical products and substances.

0.2031624

1.22527144

41. Huila

0.028787

1.02920535

47. Magdalena

−0.020114

−0.9800869

50. Meta

0.0686674

1.07107991

52. Nariño

−0.0073785

−0.9926487

6. Manufacture of non-metallic mineral products

0.0935644

1.09808132

66. Risaralda

0.0204832

1.02069442

68. Santander

−0.0197699

−0.9804242

7. Metallurgy and manufacture of metal products.

−0.0249021

−0.9754054

70. Sucre

0.0185345

1.01870733

73. Tolima

−0.0294656

−0.9709643

76. Valle del Cauca

0.1978713

1.21880552

8. Textile, apparel, footwear and leather products.

−0.0392153

−0.9615437

8. Atlántico

0.0340927

1.03468052

85. Casanare

0.0807537

1.08410385

9. Other industrial divisions

−0.0640447

−0.9379631

99. Vichada

−0.0099147

−0.9901343

c1acygga

0.1058259

1.11162833

c1acygge

0.0329876

1.03353772

c1acyggg

0.8522824

2.34499296

c1inygrmye

0.0165909

1.01672929

c1iygtotr1

0.4206342

1.52292709

c1iygtotr3r2

−0.1787424

−0.8363213

c3rh2vtc

0.8445018

2.3268183

Ppolizamb

0.1588814

1.17219892

Valagri

0.2556796

1.29133892

0. filtcertecocapv

−0.4205039

−0.6567158

  1. Note: own elaboration figure made in Stata (17).