Table 3 Results of sensitivity analysis for the equilibrium outcomes in the case of without channel integration.
Without channel integration (Case n) | Sensitivity analysis | |||
|---|---|---|---|---|
\({k}_{r}\) | \({k}_{o}\) | \(t\) | ||
\({{w}^{n}}^{* }\) | \(p-\frac{{k}_{r}(4{k}_{o}{t}^{2}+\sigma )}{2{k}_{r}-{k}_{o}}\) | \(+\) | \(-\) | \(-\) |
\({{s}_{r}^{n}}^{* }\) | \(\frac{4{k}_{o}{t}^{2}+\sigma }{4(2{k}_{r}-{k}_{o})t}\) | \(-\) | \(+\) | \(-\to +\) |
\({{s}_{o}^{n}}^{* }\) | \(\frac{4{k}_{o}{k}_{r}{t}^{2}+({k}_{o}-{k}_{r})\sigma }{4(2{k}_{r}-{k}_{o})t}\) | \(-\) | \(+\) | \(+\) |
\({{D}_{r}^{n}}^{* }\) | \(\frac{{k}_{r}(4{k}_{o}{t}^{2}+\sigma )}{8{k}_{o}(2{k}_{r}-{k}_{o}){t}^{2}}\) | \(-\) | \(+\to -\to +\) | \(-\) |
\({{D}_{o}^{n}}^{* }\) | \(\frac{4{k}_{o}\left(3{k}_{r}-2{k}_{o}\right){t}^{2}-{k}_{r}\sigma }{8{k}_{o}(2{k}_{r}-{k}_{o}){t}^{2}}\) | \(+\) | \(-\to +\to -\) | \(+\) |
\({{\pi }_{r}^{n}}^{* }\) | \(\frac{{k}_{r}{(4{k}_{o}{t}^{2}+\sigma )}^{2}}{16{k}_{o}(2{k}_{r}-{k}_{o}){t}^{2}}\) | \(-\) | \(-\to +\) | \(-\to +\) |
\({{\pi }_{m}^{n}}^{* }\) | \(p-c-{\varLambda }_{1}\) | \(-\to +\) | \(-\) | \(-\) |