Table 3 Results of sensitivity analysis for the equilibrium outcomes in the case of without channel integration.

From: The impact of consumers’ cross-channel experiencing behavior on omnichannel integration based on game-theoretic analysis

Without channel integration (Case n)

Sensitivity analysis

\({k}_{r}\)

\({k}_{o}\)

\(t\)

\({{w}^{n}}^{* }\)

\(p-\frac{{k}_{r}(4{k}_{o}{t}^{2}+\sigma )}{2{k}_{r}-{k}_{o}}\)

\(+\)

\(-\)

\(-\)

\({{s}_{r}^{n}}^{* }\)

\(\frac{4{k}_{o}{t}^{2}+\sigma }{4(2{k}_{r}-{k}_{o})t}\)

\(-\)

\(+\)

\(-\to +\)

\({{s}_{o}^{n}}^{* }\)

\(\frac{4{k}_{o}{k}_{r}{t}^{2}+({k}_{o}-{k}_{r})\sigma }{4(2{k}_{r}-{k}_{o})t}\)

\(-\)

\(+\)

\(+\)

\({{D}_{r}^{n}}^{* }\)

\(\frac{{k}_{r}(4{k}_{o}{t}^{2}+\sigma )}{8{k}_{o}(2{k}_{r}-{k}_{o}){t}^{2}}\)

\(-\)

\(+\to -\to +\)

\(-\)

\({{D}_{o}^{n}}^{* }\)

\(\frac{4{k}_{o}\left(3{k}_{r}-2{k}_{o}\right){t}^{2}-{k}_{r}\sigma }{8{k}_{o}(2{k}_{r}-{k}_{o}){t}^{2}}\)

\(+\)

\(-\to +\to -\)

\(+\)

\({{\pi }_{r}^{n}}^{* }\)

\(\frac{{k}_{r}{(4{k}_{o}{t}^{2}+\sigma )}^{2}}{16{k}_{o}(2{k}_{r}-{k}_{o}){t}^{2}}\)

\(-\)

\(-\to +\)

\(-\to +\)

\({{\pi }_{m}^{n}}^{* }\)

\(p-c-{\varLambda }_{1}\)

\(-\to +\)

\(-\)

\(-\)

  1. The sign of “\(-\)” indicates a monotonic decrease; the sign of “\(+\)” indicates a monotonic increase; the sign of “\({\to}\)” indicates the conversion to.