Table 4 Results of sensitivity analysis for the equilibrium outcomes in the case of channel integration.

From: The impact of consumers’ cross-channel experiencing behavior on omnichannel integration based on game-theoretic analysis

With channel integration (Case i)

Sensitivity analysis

\({k}_{r}\)

\({k}_{o}\)

\(t\)

\({{w}^{i}}^{* }\)

\(p-\frac{{k}_{r}(16{k}_{o}{t}^{2}{(1-\alpha )}^{2}{\alpha }^{2}+{(\alpha +\beta -2\alpha \beta )}^{2}\sigma )}{(2{k}_{r}-{k}_{o}){(\alpha +\beta -2\alpha \beta )}^{2}}\)

\(+\)

\(-\)

\(-\)

\({{s}_{r}^{i}}^{* }\)

\(\frac{16{k}_{o}{t}^{2}{(1-\alpha )}^{2}{\alpha }^{2}+{(\alpha +\beta -2\alpha \beta )}^{2}\sigma }{8(2{k}_{r}-{k}_{o})(1-\alpha )\alpha (\alpha +\beta -2\alpha \beta )t}\)

\(-\)

\(+\)

\(-\to +\)

\({{s}_{o}^{i}}^{* }\)

\(\frac{16{k}_{o}{k}_{r}{t}^{2}{(1-\alpha )}^{2}{\alpha }^{2}-({k}_{r}-{k}_{o}){(\alpha +\beta -2\alpha \beta )}^{2}\sigma }{8{k}_{o}(2{k}_{r}-{k}_{o})(1-\alpha )\alpha (\alpha +\beta -2\alpha \beta )t}\)

\(-\)

\(+\)

\(+\)

\({{D}_{r}^{i}}^{* }\)

\(\frac{\left(\begin{array}{c}8{{k}_{o}}^{2}{t}^{2}{\left(1-\alpha \right)}^{2}\alpha \left(\alpha -\beta \right)+16{k}_{o}{k}_{r}{t}^{2}{\left(1-\alpha \right)}^{3}\alpha \beta \\ +{k}_{r}\left(1-\beta \right){\left(\alpha +\beta -2\alpha \beta \right)}^{2}\sigma \end{array}\right)}{16{k}_{o}(2{k}_{r}-{k}_{o}){\left(1-\alpha \right)}^{2}\alpha (\alpha +\beta -2\alpha \beta ){t}^{2}}\)

\(-\)

\(+\to -\to +\)

\(-\)

\({{D}_{o}^{i}}^{* }\)

\(\frac{\left(\begin{array}{c}8{k}_{o}{t}^{2}\left(1-\alpha \right){\alpha }^{2}\left(2{k}_{r}\left(\alpha +2\beta -3\alpha \beta \right)-{k}_{o}\left(\alpha +3\beta -4\alpha \beta \right)\right)\\ -{k}_{r}\beta {\left(\alpha +\beta -2\alpha \beta \right)}^{2}\sigma \end{array}\right)}{16{k}_{o}(2{k}_{r}-{k}_{o}){t}^{2}(1-\alpha ){\alpha }^{2}(\alpha +\beta -2\alpha \beta )}\)

\(+\)

\(-\to +\to -\)

\(+\)

\({{D}_{c}^{i}}^{* }\)

\(\frac{(\alpha -\beta )(16{k}_{o}({k}_{r}-{k}_{o}){(1-\alpha )}^{2}{\alpha }^{2}{t}^{2}-{k}_{r}{(\alpha +\beta -2\alpha \beta )}^{2}\sigma )}{16{k}_{o}(2{k}_{r}-{k}_{o}){\left(1-\alpha \right)}^{2}{\alpha }^{2}{t}^{2}(\alpha +\beta -2\alpha \beta )}\)

\(+\)

\(-\to +\to -\)

\(+\)

\({{\pi }_{r}^{i}}^{* }\)

\(\frac{{k}_{r}{(16{k}_{o}{(1-\alpha )}^{2}{\alpha }^{2}{t}^{2}+{(\alpha +\beta -2\alpha \beta )}^{2}\sigma )}^{2}}{64{k}_{o}(2{k}_{r}-{k}_{o}){(1-\alpha )}^{2}{\alpha }^{2}{t}^{2}{(\alpha +\beta -2\alpha \beta )}^{2}}\)

\(-\)

\(+\to -\to +\)

\(-\to +\)

\({{\pi }_{m}^{i}}^{* }\)

\(p-c-{\varLambda }_{2}\)

\(-\to +\)

\(-\)

\(-\)

  1. The sign of “\(-\)” indicates a monotonic decrease; the sign of “\(+\)” indicates a monotonic increase; the sign of “\({{\to }}\)” indicates the conversion to.