Table 1 Assessment of ML models’ performance
Model | Tmax | Tmin | Pre | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | MAE | NSE | MBE | RMSE | R2 | MAE | NSE | MBE | RMSE | R2 | MAE | NSE | MBE | |
RF | 2.446 | 0.944 | 1.837 | 0.945 | 0.01 | 2.462 | 0.926 | 1.822 | 0.926 | −0.01 | 0.849 | 0.645 | 0.419 | 0.445 | 0.001 |
SMV | 2.458 | 0.943 | 1.864 | 0.943 | 0.008 | 2.467 | 0.926 | 1.839 | 0.925 | −0.01 | 0.853 | 0.640 | 0.420 | 0.443 | 0.001 |
LGBM | 2.428 | 0.945 | 1.861 | 0.944 | 0.007 | 2.458 | 0.926 | 1.835 | 0.926 | −0.01 | 0.847 | 0.647 | 0.419 | 0.446 | 0.001 |
XGB | 2.458 | 0.943 | 1.872 | 0.943 | 0.008 | 2.470 | 0.926 | 1.845 | 0.926 | −0.01 | 0.850 | 0.644 | 0.42 | 0.444 | 0.001 |
CB | 2.471 | 0.943 | 1.889 | 0.943 | 0.008 | 2.481 | 0.925 | 1.857 | 0.925 | −0.01 | 0.854 | 0.639 | 0.423 | 0.439 | 0.002 |