Table 1 Assessment of ML models’ performance

From: Developing an ensemble machine learning framework for enhanced climate projections using CMIP6 data in the Middle East

Model

Tmax

Tmin

Pre

RMSE

R2

MAE

NSE

MBE

RMSE

R2

MAE

NSE

MBE

RMSE

R2

MAE

NSE

MBE

RF

2.446

0.944

1.837

0.945

0.01

2.462

0.926

1.822

0.926

−0.01

0.849

0.645

0.419

0.445

0.001

SMV

2.458

0.943

1.864

0.943

0.008

2.467

0.926

1.839

0.925

−0.01

0.853

0.640

0.420

0.443

0.001

LGBM

2.428

0.945

1.861

0.944

0.007

2.458

0.926

1.835

0.926

−0.01

0.847

0.647

0.419

0.446

0.001

XGB

2.458

0.943

1.872

0.943

0.008

2.470

0.926

1.845

0.926

−0.01

0.850

0.644

0.42

0.444

0.001

CB

2.471

0.943

1.889

0.943

0.008

2.481

0.925

1.857

0.925

−0.01

0.854

0.639

0.423

0.439

0.002