Table 5 Hyper-parameters of ML models adjusted in this study

From: Developing an ensemble machine learning framework for enhanced climate projections using CMIP6 data in the Middle East

Algorithm

Hyper-parameters

Explanation

Grid search values

Random Forest (RF)

n_estimators

Number of trees in a forest

100, 150

 

max_depth

Highest depth of the tree

10, 15

Support Vector Machine (SVM)

C

Penalty parameter

0.1, 1, 10

 

gamma

Bandwidth parameter

0.01, 0.1, 1

 

kernel

Kernel function

RBF

LightGBM (LGBM)

n_estimators

Number of trees in a forest

100, 150

 

learning_rate

Learning rate

0.01, 0.1

 

num_leaves

Number of leaves in one tree

31, 50

 

max_depth

Highest depth of the tree

−1, 10

XGBoost (XGB)

n_estimators

Number of trees in a forest

100, 150

 

learning_rate

Learning rate

0.01, 0.1

 

max_depth

Highest depth of the tree

3, 5

CatBoost (CB)

iterations

Number of boosting iterations

100, 150

 

learning_rate

Learning rate

0.01, 0.1

 

depth

Depth of the tree

4, 6