Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Precision Oncology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj precision oncology
  3. articles
  4. article
Ex vivo drug sensitivity profiling to complement molecular profiling in pediatric precision oncology
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 January 2026

Ex vivo drug sensitivity profiling to complement molecular profiling in pediatric precision oncology

  • Marlinde C. Schoonbeek1 na1,
  • Pierre Gestraud2 na1,
  • Lindy Vernooij1,
  • Arjan Boltjes1,
  • Vicky Amo-Addae1,
  • Marloes van Luik1,
  • Elaine Del Nery3,
  • Angela Bellini4,
  • Ellora Chua2,
  • Sarah Swaak1,
  • Eleonora J. Looze1,
  • Vilja M. Pietiäinen5,6,
  • Laura L. Turunen5,
  • Jani S. Saarela5,
  • Julia Schueler7,
  • Emilie Indersie8,
  • Dennis Gürgen9,
  • Katia Scotlandi10,
  • Angelika Eggert11,
  • Rachida Bouarich4,
  • Franck Bourdeaut12,
  • Sakina Zaidi4,
  • Didier Surdez13,
  • Ángel M. Carcaboso14,
  • Birgit Geoerger15,
  • Yasmine Iddir4,
  • Alexandra Saint-Charles4,
  • Elnaz Saberi-Ansari4,
  • Florence Cavalli2,
  • Apurva Gopisetty16,17,
  • Eva Maria Rief17,
  • Hubert N. Caron18,
  • Lou Stancato17,19,
  • Gilles Vassal15,17,
  • Stefan Pfister16,17,
  • Jan Koster20,
  • Selma Eising1,
  • Sander R. van Hooff21 nAff23,
  • Marlinde L. van den Boogaard1,
  • Gudrun Schleiermacher4 na1 &
  • …
  • Jan J. Molenaar1,22 na1 

npj Precision Oncology , Article number:  (2026) Cite this article

  • 1744 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cancer
  • Computational biology and bioinformatics
  • Drug discovery
  • Oncology

Abstract

Pediatric patients with high-risk extra-cranial solid tumors face a 5-year survival rate below 50%. As molecular profiling alone is insufficient to guide treatment at relapse, complementary strategies like drug screening are urgently needed. We evaluated short-term drug screening as a rapid, reliable method to assess drug sensitivities in pediatric solid tumors using ex vivo cultures from previously established patient-derived xenograft (PDX) models. Ex vivo drug screening was performed within 14 days of receipt across two institutes, testing 77-224 compounds depending on cell availability. Drug responses were consistent across institutes (n = 6), and effective compounds were reproducibly identified in a replicate model. Tumor type-specific responses were observed. In neuroblastoma, ALK-mutation status did not correlate with ALK-inhibitor response, whereas correlations with transcriptomic changes were observed. Timepoint-specific drug sensitivities were observed in serial Ewing sarcoma models. Overall, drug hits were identified in 94% of screens (n = 63), broadening treatment options for 88% of cases without targetable alterations (n = 11). In case of a targetable event, drug screening refined compound choice. Ex vivo drug screening is a fast and feasible method, providing insights into compound efficacy and enabling quick identification of functional treatment suggestions. Ex vivo drug screening should be integrated into a future next-generation diagnostic platform for pediatric solid tumors, combined with genomics and transcriptomics.

Similar content being viewed by others

Drug sensitivity profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM

Article Open access 27 December 2022

A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics

Article Open access 13 November 2023

Deep learning-driven drug response prediction and mechanistic insights in cancer genomics

Article Open access 01 July 2025

Data availability

The data presented in this study are available via the R2 Genomics Analysis and Visualization Platform (https://hgserver2.amc.nl/).

References

  1. Steliarova-Foucher, E. et al. Changing geographical patterns and trends in cancer incidence in children and adolescents in Europe, 1991–2010 (Automated Childhood Cancer Information System): a population-based study. Lancet Oncol. 19, 1159–1169 (2018).

    Google Scholar 

  2. Pfister, S. M. et al. A summary of the inaugural WHO classification of pediatric tumors: transitioning from the optical into the molecular era. Cancer Discov. 12, 331–355 (2022).

    Google Scholar 

  3. Burdach, S., Westhoff, M.-A., Steinhauser, M. F. & Debatin, K.-M. Precision medicine in pediatric oncology. Mol. Cell Pediatr. 5, 6 (2018).

  4. Berlanga, P. et al. The European MAPPYACTS trial: precision medicine program in pediatric and adolescent patients with recurrent malignancies. Cancer Discov. 12, 1266–1281 (2022).

    Google Scholar 

  5. Heipertz, A. E. et al. Outcome of children and adolescents with relapsed/refractory/progressive malignancies treated with molecularly informed targeted drugs in the Pediatric Precision Oncology Registry INFORM. JCO Precis. Oncol. 7, e2300015 (2023).

    Google Scholar 

  6. van Tilburg, C. M. et al. The Pediatric Precision Oncology INFORM Registry: clinical outcome and benefit for patients with very high-evidence targets. Cancer Discov. 11, 2764–2779 (2021).

    Google Scholar 

  7. Langenberg, K. P. S. et al. Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’. Eur. J. Cancer 175, 311–325 (2022).

    Google Scholar 

  8. Wong, M. et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 26, 1742–1753 (2020).

    Google Scholar 

  9. Bayat, B., Raj, R., Graf, A., Vereecken, H. & Montzka, C. Comprehensive accuracy assessment of long-term geostationary SEVIRI-MSG evapotranspiration estimates across Europe. Remote Sens. Environ. 301, 113875 (2024).

    Google Scholar 

  10. Lau, L. M. et al. In vitro and in vivo drug screens of tumor cells identify novel therapies for high-risk child cancer. EMBO Mol. Med. 14, e14608 (2022).

    Google Scholar 

  11. Marquart, J., Chen, E. Y. & Prasad, V. Estimation of the percentage of US patients with cancer who benefit from genome-driven oncology. JAMA Oncol. 4, 1093–1098 (2018).

    Google Scholar 

  12. Mayoh, C. et al. High-throughput drug screening of primary tumor cells identifies therapeutic strategies for treating children with high-risk cancer. Cancer Res. 83, 2716–2732 (2023).

    Google Scholar 

  13. Letai, A., Bhola, P. & Welm, A. L. Functional precision oncology: testing tumors with drugs to identify vulnerabilities and novel combinations. Cancer Cell 40, 26–35 (2022).

    Google Scholar 

  14. Letai, A. Functional precision cancer medicine-moving beyond pure genomics. Nat. Med. 23, 1028–1035 (2017).

    Google Scholar 

  15. Marques Da Costa, M. E. et al. A biobank of pediatric patient-derived-xenograft models in cancer precision medicine trial MAPPYACTS for relapsed and refractory tumors. Commun. Biol. 6, 1–15 (2023).

    Google Scholar 

  16. Pauli, C. et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7, 462–477 (2017).

    Google Scholar 

  17. Stewart, E. et al. Orthotopic patient-derived xenografts of paediatric solid tumours. Nature 549, 96–100 (2017).

    Google Scholar 

  18. Langenberg, K. P. S. et al. Exploring high-throughput drug sensitivity testing in neuroblastoma cell lines and patient-derived tumor organoids in the era of precision medicine. Eur. J. Cancer 218, 115275 (2025).

    Google Scholar 

  19. Peterziel, H. et al. Drug sensitivity profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM. NPJ Precis. Oncol 6, 94 (2022).

    Google Scholar 

  20. Acanda De La Rocha, A. M. et al. Feasibility of functional precision medicine for guiding treatment of relapsed or refractory pediatric cancers. Nat. Med. 1–11 https://doi.org/10.1038/s41591-024-02999-2 (2024).

  21. Lee, J. K. et al. Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat. Genet. 50, 1399–1411 (2018).

    Google Scholar 

  22. Sun, H. et al. Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidates for targeted treatment. Nat. Commun. 12, 5086 (2021).

    Google Scholar 

  23. Corre, I., Verrecchia, F., Crenn, V., Redini, F. & Trichet, V. The osteosarcoma microenvironment: a complex but targetable ecosystem. Cells 9, 976 (2020).

    Google Scholar 

  24. Skalniak, L. et al. Prolonged idasanutlin (Rg7388) treatment leads to the generation of p53-mutated cells. Cancers 10, 1–17 (2018).

    Google Scholar 

  25. Lehmann, C., Friess, T., Birzele, F., Kiialainen, A. & Dangl, M. Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models. J. Hematol. Oncol. 9, 1–13 (2016).

    Google Scholar 

  26. Gouda, M. A. & Thein, K. Z. Selinexor: changing the paradigm in patients with TP53 wild-type endometrial cancer?. Med 4, 752–754 (2023).

    Google Scholar 

  27. Montesinos, P. et al. MIRROS: a randomized, placebo-controlled, phase III trial of cytarabine ± idasanutlin in relapsed or refractory acute myeloid leukemia. Future Oncol. 16, 807–815 (2020).

    Google Scholar 

  28. Punnoose, E. A. et al. Expression profile of BCL-2, BCL-XL, and MCL-1 predicts pharmacological response to the BCL-2 selective antagonist venetoclax in multiple myeloma models. Mol. Cancer Ther. 15, 1132–1144 (2016).

    Google Scholar 

  29. Alvarez, M. J. et al. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat. Genet. 48, 838–847 (2016).

    Google Scholar 

  30. Jamaladdin, N. et al. Key pharmacokinetic parameters of 74 pediatric anticancer drugs providing assistance in preclinical studies. Clin. Pharm. Ther. 114, 904–913 (2023).

    Google Scholar 

  31. Rokita, J. L. et al. Genomic profiling of childhood tumor patient-derived xenograft models to enable rational clinical trial design. Cell Rep. 29, 1675–1689.e9 (2019).

    Google Scholar 

  32. Castillo-Ecija, H. et al. Prognostic value of patient-derived xenograft engraftment in pediatric sarcomas. J. Pathol. Clin. Res. 7, 338–349 (2021).

    Google Scholar 

  33. Kamili, A. et al. Accelerating development of high-risk neuroblastoma patient-derived xenograft models for preclinical testing and personalised therapy. Br. J. Cancer 122, 680–691 (2020).

    Google Scholar 

  34. Akemi Kido, L. et al. Establishing a pediatric solid tumor PDX biobank for precision oncology research. Cancer Biol. Ther 26, 2541974 (2025).

    Google Scholar 

  35. Hafner, M., Niepel, M., Chung, M. & Sorger, P. K. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat. Methods 13, 521–527 (2016).

    Google Scholar 

  36. Smith, M. A. et al. Lessons learned from 20 years of preclinical testing in pediatric cancers. Pharm. Ther. 264, 108742 (2024).

    Google Scholar 

  37. Brenner, J. C. et al. PARP-1 inhibition as a targeted strategy to treat Ewing’s sarcoma. Cancer Res. 72, 1608–1613 (2012).

    Google Scholar 

  38. Stewart, E. et al. Targeting the DNA repair pathway in Ewing sarcoma. Cell Rep. 9, 829–840 (2014).

    Google Scholar 

  39. Schafer, E. S. et al. Phase 1/2 trial of talazoparib in combination with temozolomide in children and adolescents with refractory/recurrent solid tumors including Ewing sarcoma: a Children’s Oncology Group Phase 1 Consortium study (ADVL1411). Pediatr. Blood Cancer 67, 1–11 (2020).

    Google Scholar 

  40. Choy, E. et al. Phase II study of olaparib in patients with refractory Ewing sarcoma following failure of standard chemotherapy. BMC Cancer 14, 1–6 (2014).

    Google Scholar 

  41. Takagi, M. et al. First phase 1 clinical study of olaparib in pediatric patients with refractory solid tumors. Cancer 128, 2949–2957 (2022).

    Google Scholar 

  42. Tucker, E. R. et al. Combination therapies targeting ALK-aberrant neuroblastoma in preclinical models. Clin. Cancer Res. 29, 1317–1331 (2023).

    Google Scholar 

  43. Zhang, Q. et al. ALK phosphorylates SMAD4 on tyrosine to disable TGF-β tumour suppressor functions. Nat. Cell Biol. 21, 179–189 (2019).

    Google Scholar 

  44. Qu, H. et al. Smad4 suppresses the tumorigenesis and aggressiveness of neuroblastoma through repressing the expression of heparanase. Sci. Rep. 6, 1–14 (2016).

    Google Scholar 

  45. Schubert, N. A. et al. Combined targeting of the p53 and pRb pathway in neuroblastoma does not lead to synergistic responses. Eur. J. Cancer 142, 1–9 (2021).

    Google Scholar 

  46. McAleer, C. W. et al. On the potential of in vitro organ-chip models to define temporal pharmacokinetic-pharmacodynamic relationships. Sci. Rep. 9, 1–14 (2019).

    Google Scholar 

  47. Smith, D. A., Di, L. & Kerns, E. H. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat. Rev. Drug Discov. 9, 929–939 (2010).

    Google Scholar 

  48. Zhu, J. et al. Translational pharmacokinetic/pharmacodynamic modeling and simulation of oxaliplatin and irinotecan in colorectal cancer. Pharmaceutics 15, 2274 (2023).

    Google Scholar 

  49. Pusch, F. F. et al. Elimusertib has anti-Tumor activity in preclinical patient-derived pediatric solid tumor models. Mol. Cancer Ther. 23, 507–519 (2024).

    Google Scholar 

  50. Fernando, T. M. et al. Functional characterization of SMARCA4 variants identified by targeted exome-sequencing of 131,668 cancer patients. Nat. Commun. 11, 1–13 (2020).

    Google Scholar 

  51. Surdez, D. et al. STAG2 mutations alter CTCF-anchored loop extrusion, reduce cis-regulatory interactions and EWSR1-FLI1 activity in Ewing sarcoma. Cancer Cell 39, 810–826.e9 (2021).

    Google Scholar 

  52. Lin, G. L. & Monje, M. A protocol for rapid post-mortem cell culture of diffuse intrinsic pontine glioma (DIPG). J. Vis. Exp. 2017, 1–8 (2017).

    Google Scholar 

  53. ElHarouni, D. et al. iTReX: interactive exploration of mono- and combination therapy dose response profiling data. Pharmacol. Res. 175, 105996 (2022).

    Google Scholar 

  54. Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response analysis using R. PLoS ONE 10, 1–13 (2015).

    Google Scholar 

  55. Love, M. I., Hogenesch, J. B. & Irizarry, R. A. Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation. Nat. Biotechnol. 34, 1287–1291 (2016).

    Google Scholar 

  56. Korotkevich, G., Sukhov, V. & Sergushichev, A. fgsea: Fast Gene Set Enrichment Analysis. https://bioconductor.org/packages/fgsea (2023).

  57. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    Google Scholar 

  58. Dolgalev, I. msigdbr: MSigDB Gene Sets for Multiple Organisms in a Tidy Data Format, version 7.5.1. https://cran.r-project.org/web/packages/msigdbr/index.html (2022).

  59. Ding, H. et al. Quantitative assessment of protein activity in orphan tissues and single cells using the metaVIPER algorithm. Nat. Commun 9, 1471 (2018).

    Google Scholar 

  60. Lachmann, A., Giorgi, F. M., Lopez, G. & Califano, A. ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information. Bioinformatics 32, 2233–2235 (2016).

    Google Scholar 

  61. Margolin, A. A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinforma. 7, 1–15 (2006).

    Google Scholar 

  62. Zhang, W. et al. Comparison of RNA-seq and microarray-based models for clinical endpoint prediction. Genome Biol. 16, 1–12 (2015).

    Google Scholar 

Download references

Acknowledgements

We thank all patients and their parents for providing samples that made this research possible. We appreciate the support given by the following core facilities: High Throughput Screening Facility in the Princess Máxima Center and BioPhenics High-Content Screening Laboratory in the Curie Institute, and FIMM High Throughput Biomedicine Core unit (supported by EU OPENSCREEN and BioCenter Finland). We would like to thank our collaborators of the ITCCP4 consortium for sharing their knowledge and resources. The part of this work that is performed in the Máxima was supported within the framework of the IMI2 ITCC-P4 program (grant agreement no. 116064). In addition, the molecular characterization of some PDX models and the IRCCS—Istituto Ortopedico Rizzoli, Experimental Oncology Laboratory, Bologna, Italy, (K.S.), was supported by the IMI2 ITCC-P4 program (grant agreement no. 116064). We acknowledge the role of the Italian Alliance against Cancer for coordinating the participation in the ITCC-P4 project. E.C. is supported by the EuReCa international PhD program granted to Institut Curie. At Institut Curie, this study was supported by the Ligue contre le Cancer (Projet de Recherche Enfants, Adolescents et Cancer de la Ligue Contre le Cancer), the Annenberg Foundation, the Association Hubert Gouin Enfance et Cancer, Imagine for Margo, the Fondation ARC pour la Recherche contre le Cancer (ARC), Agence Nationale de la Recherche (ANR) and the EraPerMed2018 funding call. Establishment of some PDX models was performed under the MAPPYACTS protocol (clinicaltrial.gov: NCT02613962). Part of this work was supported by the Aamu Foundation and the Cancer Foundation. The FIMM High Throughput Biomedicine unit is supported by the University of Helsinki and Biocenter Finland, Finnish Cultural Foundation, and Väre Foundation (VP). Figure 1A was created in BioRender (Molenaar, J., 2025; https://BioRender.com/002la1z).

Author information

Author notes
  1. Sander R. van Hooff

    Present address: Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands

  2. These authors contributed equally: Marlinde C. Schoonbeek, Pierre Gestraud, Gudrun Schleiermacher, Jan J. Molenaar.

Authors and Affiliations

  1. Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands

    Marlinde C. Schoonbeek, Lindy Vernooij, Arjan Boltjes, Vicky Amo-Addae, Marloes van Luik, Sarah Swaak, Eleonora J. Looze, Selma Eising, Marlinde L. van den Boogaard & Jan J. Molenaar

  2. INSERM U1331 Computational Oncology, Institut Curie, PSL Research University, Mines Paris Tech, Paris, France

    Pierre Gestraud, Ellora Chua & Florence Cavalli

  3. BioPhenics High-Content Screening Laboratory, Department of Translational Research, Curie Institute, Paris, France

    Elaine Del Nery

  4. RTOP (Translational Research in Pediatric Oncology), U1330 INSERM, SIREDO Integrated Pediatric Oncology Center, PSL University, Curie Institute, Paris, France

    Angela Bellini, Rachida Bouarich, Sakina Zaidi, Yasmine Iddir, Alexandra Saint-Charles, Elnaz Saberi-Ansari & Gudrun Schleiermacher

  5. Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki FI, Helsinki, Finland

    Vilja M. Pietiäinen, Laura L. Turunen & Jani S. Saarela

  6. iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland

    Vilja M. Pietiäinen

  7. Charles River Laboratories Germany GmbH, Freiburg, Germany

    Julia Schueler

  8. Xentech, Evry, France

    Emilie Indersie

  9. Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany

    Dennis Gürgen

  10. IRCCS Istituto Ortopedico Rizzoli, Experimental Oncology Laboratory, Bologna, Italy

    Katia Scotlandi

  11. Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany

    Angelika Eggert

  12. Paris Cité University, Paris, France, U1330 INSERM, SIREDO Integrated Pediatric Oncology Center, Curie Institute, Paris, France

    Franck Bourdeaut

  13. Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland

    Didier Surdez

  14. SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Sant Joan de Déu Barcelona Hospital, Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain

    Ángel M. Carcaboso

  15. Gustave Roussy Cancer Campus, Villejuif, France

    Birgit Geoerger & Gilles Vassal

  16. Hopp Children’s Cancer Center (KiTZ), DKFZ and German Cancer Consortium (DKTK), Heidelberg, Germany

    Apurva Gopisetty & Stefan Pfister

  17. ITCC-P4 gGmbH, Heidelberg, Germany

    Apurva Gopisetty, Eva Maria Rief, Lou Stancato, Gilles Vassal & Stefan Pfister

  18. Hoffman-La Roche, Basel, Switzerland

    Hubert N. Caron

  19. Indiana Biosciences Research Institute, Indianapolis, IN, USA

    Lou Stancato

  20. Amsterdam UMC, R2 Platform, Amsterdam, The Netherlands

    Jan Koster

  21. Amsterdam UMC, Amsterdam, The Netherlands

    Sander R. van Hooff

  22. Utrecht University, Department of Pharmaceutical Sciences, Utrecht, The Netherlands

    Jan J. Molenaar

Authors
  1. Marlinde C. Schoonbeek
    View author publications

    Search author on:PubMed Google Scholar

  2. Pierre Gestraud
    View author publications

    Search author on:PubMed Google Scholar

  3. Lindy Vernooij
    View author publications

    Search author on:PubMed Google Scholar

  4. Arjan Boltjes
    View author publications

    Search author on:PubMed Google Scholar

  5. Vicky Amo-Addae
    View author publications

    Search author on:PubMed Google Scholar

  6. Marloes van Luik
    View author publications

    Search author on:PubMed Google Scholar

  7. Elaine Del Nery
    View author publications

    Search author on:PubMed Google Scholar

  8. Angela Bellini
    View author publications

    Search author on:PubMed Google Scholar

  9. Ellora Chua
    View author publications

    Search author on:PubMed Google Scholar

  10. Sarah Swaak
    View author publications

    Search author on:PubMed Google Scholar

  11. Eleonora J. Looze
    View author publications

    Search author on:PubMed Google Scholar

  12. Vilja M. Pietiäinen
    View author publications

    Search author on:PubMed Google Scholar

  13. Laura L. Turunen
    View author publications

    Search author on:PubMed Google Scholar

  14. Jani S. Saarela
    View author publications

    Search author on:PubMed Google Scholar

  15. Julia Schueler
    View author publications

    Search author on:PubMed Google Scholar

  16. Emilie Indersie
    View author publications

    Search author on:PubMed Google Scholar

  17. Dennis Gürgen
    View author publications

    Search author on:PubMed Google Scholar

  18. Katia Scotlandi
    View author publications

    Search author on:PubMed Google Scholar

  19. Angelika Eggert
    View author publications

    Search author on:PubMed Google Scholar

  20. Rachida Bouarich
    View author publications

    Search author on:PubMed Google Scholar

  21. Franck Bourdeaut
    View author publications

    Search author on:PubMed Google Scholar

  22. Sakina Zaidi
    View author publications

    Search author on:PubMed Google Scholar

  23. Didier Surdez
    View author publications

    Search author on:PubMed Google Scholar

  24. Ángel M. Carcaboso
    View author publications

    Search author on:PubMed Google Scholar

  25. Birgit Geoerger
    View author publications

    Search author on:PubMed Google Scholar

  26. Yasmine Iddir
    View author publications

    Search author on:PubMed Google Scholar

  27. Alexandra Saint-Charles
    View author publications

    Search author on:PubMed Google Scholar

  28. Elnaz Saberi-Ansari
    View author publications

    Search author on:PubMed Google Scholar

  29. Florence Cavalli
    View author publications

    Search author on:PubMed Google Scholar

  30. Apurva Gopisetty
    View author publications

    Search author on:PubMed Google Scholar

  31. Eva Maria Rief
    View author publications

    Search author on:PubMed Google Scholar

  32. Hubert N. Caron
    View author publications

    Search author on:PubMed Google Scholar

  33. Lou Stancato
    View author publications

    Search author on:PubMed Google Scholar

  34. Gilles Vassal
    View author publications

    Search author on:PubMed Google Scholar

  35. Stefan Pfister
    View author publications

    Search author on:PubMed Google Scholar

  36. Jan Koster
    View author publications

    Search author on:PubMed Google Scholar

  37. Selma Eising
    View author publications

    Search author on:PubMed Google Scholar

  38. Sander R. van Hooff
    View author publications

    Search author on:PubMed Google Scholar

  39. Marlinde L. van den Boogaard
    View author publications

    Search author on:PubMed Google Scholar

  40. Gudrun Schleiermacher
    View author publications

    Search author on:PubMed Google Scholar

  41. Jan J. Molenaar
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Marlinde C. Schoonbeek: conceptualization, data curation, analyses, investigation, methodology, writing—original draft, visualization, and project administration. Pierre Gestraud: data curation, analyses, visualization, and writing—original draft. Lindy Vernooij: investigation and project administration. Arjan Boltjes: analyses and visualization. Vicky Amo-Addae: methodology and resources (Máxima library). Marloes van Luik: analyses and visualization. Elaine Del Nery: methodology and investigation. Angela Bellini: investigation and methodology. Ellora Chua: data curation, analyses, visualization, and original draft. Sarah Swaak: investigation. Eleonora Looze: investigation and writing—review & editing. Vilja M. Pietiäinen, Laura L. Turunen, and Jani S. Saarela: methodology and resources (COMPASS drug library). Julia Schueler, Emilie Indersie, Dennis Gürgen, Katia Scotlandi, Angelika Eggert, Rachida Bouarich, Franck Bourdeaut, Sakina Zaidi, Didier Surdez, Ángel M. Carcaboso, and Birgit Geoerger: methodology and resources (PDX models). Elnaz Saberi-Ansari: data curation and analyses. Yasmine Iddir and Alexandra Saint-Charles: project administration. Florence Cavalli: supervision and writing—review & editing. Apurva Gopisetty and Eva Maria Rief: project administration (ITCCP4). Hubert N. Caron, Lou Stancato, Gilles Vassal, and Stefan Pfister: supervision (ITCCP4) and writing—review & editing. Jan Koster: resources (R2 platform). Selma Eising: methodology, supervision, conceptualization, and writing—review & editing. Sander R. van Hooff and Marlinde L. van den Boogaard: supervision and writing—review & editing. Gudrun Schleiermacher and J.J. Molenaar: conceptualization, supervision, and writing—review & editing.

Corresponding authors

Correspondence to Marlinde C. Schoonbeek or Jan J. Molenaar.

Ethics declarations

Competing interests

G.S. receives research funding from Roche, BMS, Pfizer and MSD. The other authors declare no further competing interests related to this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

251205_Supplementary FiguresFinalFinal

Suppl.Table1

Suppl.Table2

Suppl.Table3

Suppl.Table4

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoonbeek, M.C., Gestraud, P., Vernooij, L. et al. Ex vivo drug sensitivity profiling to complement molecular profiling in pediatric precision oncology. npj Precis. Onc. (2026). https://doi.org/10.1038/s41698-025-01266-0

Download citation

  • Received: 23 July 2025

  • Accepted: 23 December 2025

  • Published: 10 January 2026

  • DOI: https://doi.org/10.1038/s41698-025-01266-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • Open Access
  • About the Editors
  • Contact
  • Calls for Papers
  • Editorial policies
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Precision Oncology (npj Precis. Onc.)

ISSN 2397-768X (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer