Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gross polluters and vehicle emissions reduction

Abstract

Vehicle emissions produce an important share of a city’s air pollution, with a substantial impact on the environment and human health. Traditional emission estimation methods use remote sensing stations, missing the full driving cycle of vehicles, or focus on a few vehicles. We have used GPS traces and a microscopic model to analyse the emissions of four air pollutants from thousands of private vehicles in three European cities. We found that the emissions across the vehicles and roads are well approximated by heavy-tailed distributions and thus discovered the existence of gross polluters, vehicles responsible for the greatest quantity of emissions, and grossly polluted roads, which suffer the greatest amount of emissions. Our simulations show that emissions reduction policies targeting gross polluters are far more effective than those limiting circulation based on an uninformed choice of vehicles. Our study contributes to shaping the discussion on how to measure emissions with digital data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Computation of emissions from GPS trajectories.
Fig. 2: Distributions of emissions.
Fig. 3: Simulation of vehicle electrification.

Similar content being viewed by others

Data availability

The data that support the findings of this study are not publicly available due to privacy restrictions and were used under licence for the current study. Aggregated source data for figures are available from the authors upon reasonable request.

Code availability

The Python code to reproduce the analyses in the study from public GPS data (taxi trips) is publicly available in GitHub (https://github.com/matteoboh/mobility_emissions) and the Zenodo repository66.

References

  1. Venter, Z. S., Aunan, K., Chowdhury, S. & Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl Acad. Sci. USA 117, 18984–18990 (2020).

    Article  CAS  Google Scholar 

  2. Le Quéré, C. et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Change 10, 647–653 (2020).

    Article  CAS  Google Scholar 

  3. He, G., Pan, Y. & Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 3, 1005–1011 (2020).

    Article  Google Scholar 

  4. Liu, Z. et al. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun. 11, 5172 (2020).

    Article  CAS  Google Scholar 

  5. Forster, P. et al. Current and future global climate impacts resulting from COVID-19. Nat. Clim. Change 10, 913–919 (2020).

    Article  CAS  Google Scholar 

  6. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer et al.) 599–670 (Cambridge Univ. Press, 2014).

  7. Ritchie, H. Sector by Sector: Where Do Global Greenhouse Gas Emissions Come From? (Our World in Data, 2020); https://ourworldindata.org/ghg-emissions-by-sector

  8. United Nations General Assembly Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).

  9. deSouza, P. et al. Air quality monitoring using mobile low-cost sensors mounted on trash-trucks: methods development and lessons learned. Sustaina. Cities Soc. 60, 102239 (2020).

    Article  Google Scholar 

  10. Chong, H. S., Kwon, S., Lim, Y. & Lee, J. Real-world fuel consumption, gaseous pollutants, and CO2 emission of light-duty diesel vehicles. Sustain. Cities Soc. 53, 101925 (2020).

    Article  Google Scholar 

  11. Luján, J. M., Bermúdez, V., Dolz, V. & Monsalve-Serrano, J. An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS). Atmos. Environ. 174, 112–121 (2018).

    Article  CAS  Google Scholar 

  12. Chatterton, T., Barnes, J., Wilson, R. E., Anable, J. & Cairns, S. Use of a novel dataset to explore spatial and social variations in car type, size, usage and emissions. Transp. Res. D 39, 151–164 (2015).

    Article  Google Scholar 

  13. i Diao, M. & Ferreira, J. Jr. Vehicle miles traveled and the built environment: evidence from vehicle safety inspection data. Environ. Plan. A. 46, 2991–3009 (2014).

  14. Kancharla, S. R. & Ramadurai, G. Incorporating driving cycle based fuel consumption estimation in green vehicle routing problems. Sustain. Cities Soc. 40, 214–221 (2018).

    Article  Google Scholar 

  15. Choudhary, A. & Gokhale, S. Urban real-world driving traffic emissions during interruption and congestion. Transp. Res. D 43, 59–70 (2016).

    Article  Google Scholar 

  16. Ferreira, J. C., de Almeida, J. & da Silva, A. R. The impact of driving styles on fuel consumption: a data-warehouse-and-data-mining-based discovery process. IEEE Trans. Intell. Transp. Syst. 16, 2653–2662 (2015).

    Article  Google Scholar 

  17. Zheng, F., Li, J., van Zuylen, H. & Lu, C. Influence of driver characteristics on emissions and fuel consumption. In 20th EURO Working Group on Transportation Meeting (eds Esztergár-Kiss, D. et al.) 624–631 (Elsevier, 2017).

  18. Pappalardo, L., Rinzivillo, S., Qu, Z., Pedreschi, D. & Giannotti, F. Understanding the patterns of car travel. Eur. Phys. J. Spec. Top. 215, 61–73 (2013).

    Article  Google Scholar 

  19. Pappalardo, L. et al. Returners and explorers dichotomy in human mobility. Nat. Commun. 6, 8166 (2015).

    Article  Google Scholar 

  20. Gallotti, R., Bazzani, A. & Rambaldi, S. Towards a statistical physics of human mobility. Int. J. Mod. Phys. C 23, 1250061 (2012).

    Article  Google Scholar 

  21. Luca, M., Barlacchi, G., Lepri, B. & Pappalardo, L. A survey on deep learning for human mobility. ACM Comput. Surv. 55, 1–44 (2021).

    Article  Google Scholar 

  22. Barbosa, H. et al. Human mobility: models and applications. Phys. Rep. 734, 1–74 (2018).

    Article  Google Scholar 

  23. Çolak, S., Lima, A. & González, M. C. Understanding congested travel in urban areas. Nat. Commun. 7, 10793 (2016).

    Article  CAS  Google Scholar 

  24. Lwin, H. & Naing, T. Estimation of road traffic congestion using GPS data. Int. J. Adv. Res. Comput. Commun. Eng. 4, 1–5 (2015).

    Article  Google Scholar 

  25. Stipancic, J., Miranda-Moreno, L., Labbe, A. & Saunier, N. Measuring and visualizing space–time congestion patterns in an urban road network using large-scale smartphone-collected GPS data. Transp. Lett. 11, 391–401 (2019).

    Article  Google Scholar 

  26. Camargo, C. Q., Bright, J., McNeill, G., Raman, S. & Hale, S. A. Estimating traffic disruption patterns with volunteered geographic information. Sci. Rep. 10, 1271 (2020).

    Article  CAS  Google Scholar 

  27. Jenn, A. Emissions benefits of electric vehicles in Uber and Lyft ride-hailing services. Nat. Energy 5, 520–525 (2020).

    Article  CAS  Google Scholar 

  28. Liang, X. et al. Air quality and health benefits from fleet electrification in China. Nat. Sustain. 2, 962–971 (2019).

    Article  Google Scholar 

  29. Rolnick, D. et al. Tackling climate change with machine learning. ACM Comput. Surv. 55, 1–96 (2019).

    Article  Google Scholar 

  30. Nyhan, M. et al. Predicting vehicular emissions in high spatial resolution using pervasively measured transportation data and microscopic emissions model. Atmos. Environ. 140, 352–363 (2016).

    Article  CAS  Google Scholar 

  31. Liu, J., Han, K., Chen, X. M. & Ong, G. P. Spatial-temporal inference of urban traffic emissions based on taxi trajectories and multi-source urban data. Transp. Res. C 106, 145–165 (2019).

    Article  Google Scholar 

  32. Reznik, A., Kissinger, M. & Alfasi, N. Real-data-based high-resolution GHG emissions accounting of urban residents private transportation. Int. J. Sustain. Transp. 13, 235–244 (2019).

    Article  Google Scholar 

  33. Wang, X., Grengs, J. & Kostyniuk, L. Using a GPS data set to examine the effects of the built environment along commuting routes on travel outcomes. J. Urban Plan. Dev. 140, 04014009 (2014).

    Article  Google Scholar 

  34. Cervero, R. & Kockelman, K. Travel demand and the 3Ds: density, diversity, and design. Transp. Res. D 2, 199–219 (1997).

    Article  Google Scholar 

  35. Gately, C. K., Hutyra, L. R., Peterson, S. & Sue Wing, I. Urban emissions hotspots: quantifying vehicle congestion and air pollution using mobile phone GPS data. Environ. Pollut. 229, 496–504 (2017).

    Article  CAS  Google Scholar 

  36. Chen, J. et al. Mining urban sustainable performance: GPS data-based spatio-temporal analysis on on-road braking emission. J. Clean. Prod. 270, 122489 (2020).

    Article  CAS  Google Scholar 

  37. Sui, Y. et al. GPS data in urban online ride-hailing: a comparative analysis on fuel consumption and emissions. J. Clean. Prod. 227, 495–505 (2019).

    Article  CAS  Google Scholar 

  38. Yu, Q. et al. Mobile phone GPS data in urban customized bus: dynamic line design and emission reduction potentials analysis. J. Clean. Prod. 272, 122471 (2020).

    Article  Google Scholar 

  39. Rahman, M. N. & Idris, A. O. Tribute: trip-based urban transportation emissions model for municipalities. Int. J. Sustain. Transp. 11, 540–552 (2017).

    Article  Google Scholar 

  40. Zhu, S., Kim, I. & Choi, K. High-resolution simulation-based analysis of leading vehicle acceleration profiles at signalized intersections for emission modeling. Int. J. Sustain. Transp. 15, 375–385 (2020).

    Article  Google Scholar 

  41. Aziz, H. M. A. & Ukkusuri, S. V. A novel approach to estimate emissions from large transportation networks: hierarchical clustering-based link-driving-schedules for EPA-MOVES using dynamic time warping measures. Int. J. Sustain. Transp. 12, 192–204 (2018).

    Article  Google Scholar 

  42. Guenther, P., Bishop, G., Peterson, J. & Stedman, D. Emissions from 200 000 vehicles: a remote sensing study. Sci. Total Environ. 146–147, 297–302 (1994).

    Google Scholar 

  43. Brand, C. & Boardman, B. Taming of the few—the unequal distribution of greenhouse gas emissions from personal travel in the UK. Energy Policy 36, 224–238 (2008).

    Article  Google Scholar 

  44. Huang, Y. et al. Remote sensing of on-road vehicle emissions: mechanism, applications and a case study from Hong Kong. Atmos. Environ. 182, 58–74 (2018).

    Article  CAS  Google Scholar 

  45. Huang, Y. et al. Re-evaluating effectiveness of vehicle emission control programmes targeting high-emitters. Nat. Sustain. 3, 904–907 (2020).

    Article  Google Scholar 

  46. Batty, M. et al. Smart cities of the future. Eur. Phys. J. Spec. Top. 214, 481–518 (2012).

    Article  Google Scholar 

  47. Kitchin, R. The real-time city? Big data and smart urbanism. GeoJournal 79, 1–14 (2014).

    Article  Google Scholar 

  48. Voukelatou, V. et al. Measuring objective and subjective well-being: dimensions and data sources. Int. J. Data Sci. Anal. 11, 279–309 (2020).

    Article  Google Scholar 

  49. OpenStreetMap contributors https://www.openstreetmap.org (2017); planet dump, retrieved from https://planet.osm.org

  50. González, M. C., Hidalgo, C. A. & Barabási, A.-L. Understanding individual human mobility patterns. Nature 453, 779–782 (2008).

    Article  CAS  Google Scholar 

  51. Pappalardo, L., Simini, F., Barlacchi, G. & Pellungrini, R. scikit-mobility: a Python library for the analysis, generation and risk assessment of mobility data. Preprint at http://arxiv.org/abs/1907.07062 (2019).

  52. Song, C., Qu, Z., Blumm, N. & Barabási, A.-L. Limits of predictability in human mobility. Science 327, 1018–1021 (2010).

    Article  CAS  Google Scholar 

  53. Eagle, N. & Pentland, A. S. Eigenbehaviors: identifying structure in routine. Behav. Ecol. Sociobiol. 63, 1057–1066 (2009).

    Article  Google Scholar 

  54. Pappalardo, L. et al. An analytical framework to nowcast well-being using mobile phone data. Int. J. Data Sci. Anal. 2, 75–92 (2016).

    Article  Google Scholar 

  55. Hastie, T. & Tibshirani, R. Generalized additive models. Stat. Sci. 1, 297–310 (1986).

    Google Scholar 

  56. Lelo, K., Monni, S. & Tomassi, F. Socio-spatial inequalities and urban transformation. The case of Rome districts. Socioecon. Plan. Sci. 68, 100696 (2019).

    Article  Google Scholar 

  57. Richards, F. J. A flexible growth function for empirical use. J. Exp. Bot. 10, 290–300 (1959).

    Article  Google Scholar 

  58. Fekedulegn, D. & Colbert, J. Parameter estimation of nonlinear growth models in forestry. Silva Fenn. 33, 653 (1999).

    Article  Google Scholar 

  59. Vyas, L. & Butakhieo, N. The impact of working from home during COVID-19 on work and life domains: an exploratory study on Hong Kong. Policy Des. Pract. 4, 59–76 (2021).

    Google Scholar 

  60. Nagel, L. The influence of the COVID-19 pandemic on the digital transformation of work. Int. J. Sociol. Soc. Policy 40, 861–875 (2020).

    Article  Google Scholar 

  61. Travel in London: Report 12 (Transport for London, 2019); http://content.tfl.gov.uk/travel-in-london-report-12.pdf

  62. Fuschiotto, A. et al. Rapporto Mobilità 2019 (Dipartimento Mobilità e Trasporti Roma Capitale, 2019); https://romamobilita.it/it/media/pubblicazioni/rapporto-mobilita-2019

  63. Boeing, G. OSMnx: new methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017).

    Article  Google Scholar 

  64. White, C. E., Bernstein, D. & Kornhauser, A. L. Some map matching algorithms for personal navigation assistants. Transp. Res. C 8, 91–108 (2000).

    Article  Google Scholar 

  65. Pappalardo, L., Ferres, L., Sacasa, M., Cattuto, C. & Bravo, L. Evaluation of home detection algorithms on mobile phone data using individual-level ground truth. EPJ Data Sci. 10, 29 (2021).

    Article  Google Scholar 

  66. Bohm, M., Nanni, M. & Pappalardo, L. matteoboh/mobility emissions: code release for Nature Sustainability paper https://doi.org/10.5281/zenodo.6124225 (2022).

Download references

Acknowledgements

This work was partially funded by the Horizon 2020 projects Track & Know (grant agreement no. 780754, M.N.), SoBigData++ (grant agreement no. 871042, M.B.) and HumanE-AI-Net (grant agreement no. 952026, L.P.). We thank G. Cornacchia, V. Voukelatou, M. Luca and G. Mauro for their useful suggestions, D. Fadda for his precious support in data visualization and F. Totti for his inspiration.

Author information

Authors and Affiliations

Authors

Contributions

M.B. designed the study, performed the data pre-processing and cleaning, developed the code for and performed the statistical analyses, experiments and simulations, created the plots, contributed to the interpretation of the results and wrote the paper. M.N. provided the data, contributed to the work methodology and interpretation of the results, and revised the paper. L.P. developed the concept and designed the study, contributed to the work methodology and interpretation of the results, wrote the paper and coordinated the study. All authors read, edited and approved the final version of the paper.

Corresponding authors

Correspondence to Matteo Böhm or Luca Pappalardo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Step-by-step procedure for the computation of emissions and results analyses.

The left column describes the steps followed starting from the data, passing through the data processing, and ending with the analyses performed. The central column shows a schema of what happens in each step. The right column shows some numbers and results in support of the central column. The heatmap in step 1 is plotted with the Python library scikit-mobility51. The small road network in step 7 is plotted with the Python library OSMnx63. Car icons from the Noun Project (thenounproject.com).

Supplementary information

Supplementary Information

Supplementary Figs. 1–32, Tables 1–13, Notes 1–8 and references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böhm, M., Nanni, M. & Pappalardo, L. Gross polluters and vehicle emissions reduction. Nat Sustain 5, 699–707 (2022). https://doi.org/10.1038/s41893-022-00903-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-022-00903-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene