Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ammonia recovery from nitrate-rich wastewater using a membrane-free electrochemical system

Abstract

Electrocatalytic nitrate reduction has great potential for simultaneously achieving ammonia recovery and nitrate-rich wastewater treatment. However, the complexity of wastewater matrices has long hampered its implementation and commercialization in the wastewater treatment industry. Here we develop a membrane-free electrochemical system, called electrochemical NO3 conversion synchronized with NH3 recovery (ECSN), which synchronizes nitrate reduction with ammonia recovery for treating real nitrate-rich wastewater. Key components of this system include a 3D-printed metallic glass decorated Cu–Ni (MPCN) working electrode bearing good corrosion resistance and a UV-assisted stripping unit. When treating real electroplating wastewater, the ECSN system converts over 70% of nitrate into high-purity ammonia chloride. Long-term stability test demonstrates the robustness of the ECSN system in treating real wastewater. Further, the economic feasibility and environmental benefits of this system are evidenced by technoeconomic analysis and life-cycle analysis. Overall, this work brings the electrocatalytic nitrate reduction process one step closer to practical application, contributing to both environmental protection and the circularity of anthropogenic nitrogen flow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Typical examples for solving nitrate problems across the water system.
Fig. 2: Preparation and characterization of MPCN.
Fig. 3: ENRR performance with MPCN electrode.
Fig. 4: Electrochemical stability of the MPCN electrode.
Fig. 5: Electrochemical recovery of NH3–N from electroplating wastewater.
Fig. 6: LCA and TEA assessment of the ECSN.

Similar content being viewed by others

Data availability

All data generated for this study are available in the paper and the Supplementary Information. Source experimental data are available via figshare (https://doi.org/10.6084/m9.figshare.26134027)50.

References

  1. Xu, H., Ma, Y., Chen, J., Zhang, W.-X. & Yang, J. Electrocatalytic reduction of nitrate—a step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 51, 2710–2758 (2022).

    CAS  Google Scholar 

  2. Chen, G.-F. et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat. Energy 5, 605–613 (2020).

    CAS  Google Scholar 

  3. Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, eaar6611 (2018).

    Google Scholar 

  4. Lim, J., Fernández, C. A., Lee, S. W. & Hatzell, M. C. Ammonia and nitric acid demands for fertilizer use in 2050. ACS Energy Lett. 6, 3676–3685 (2021).

    CAS  Google Scholar 

  5. Coates, J. D. et al. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411, 1039–1043 (2001).

    CAS  Google Scholar 

  6. Li, R. et al. Large virtual transboundary hazardous waste flows: the case of China. Environ. Sci. Technol. 57, 8161–8173 (2023).

    CAS  Google Scholar 

  7. Gu, B., Ge, Y., Chang, S. X., Luo, W. & Chang, J. Nitrate in groundwater of China: sources and driving forces. Glob. Environ. Change 23, 1112–1121 (2013).

    Google Scholar 

  8. Guo, Y., Stroka, J. R., Kandemir, B., Dickerson, C. E. & Bren, K. L. A cobalt metallopeptide electrocatalyst for the selective reduction of nitrite to ammonium. J. Am. Chem. Soc. 140, 16888–16892 (2018).

    CAS  Google Scholar 

  9. Chen, P. et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl Acad. Sci. USA 116, 6635–6640 (2019).

    CAS  Google Scholar 

  10. Wang, Y., Wang, C., Li, M., Yu, Y. & Zhang, B. Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 50, 6720–6733 (2021).

    CAS  Google Scholar 

  11. Sun, Y., Garg, S., Zhang, C., Xie, J. & Waite, T. D. Approaches to enhancing cathodic nickel recovery from Ni-EDTA containing synthetic wastewaters. ACS ES T Water 3, 2415–2426 (2023).

    CAS  Google Scholar 

  12. Park, D. et al. Metal recovery from electroplating wastewater using acidophilic iron oxidizing bacteria: pilot-scale feasibility test. Ind. Eng. Chem. Res. 44, 1854–1859 (2005).

    CAS  Google Scholar 

  13. Casademont, C., Pourcelly, G. & Bazinet, L. Bilayered self-oriented membrane fouling and impact of magnesium on CaCO3 formation during consecutive electrodialysis treatments. Langmuir 26, 854–859 (2010).

    CAS  Google Scholar 

  14. Yan, H., Xu, C., Li, W., Wang, Y. & Xu, T. Electrodialysis to concentrate waste ionic liquids: optimization of operating parameters. Ind. Eng. Chem. Res. 55, 2144–2152 (2016).

    CAS  Google Scholar 

  15. Liu, R.-T. et al. Recent advances in proton exchange membrane water electrolysis. Chem. Soc. Rev. 52, 5652–5683 (2023).

    CAS  Google Scholar 

  16. Wang, Y. et al. Enhanced nitrate-to-ammonia activity on copper–nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 142, 5702–5708 (2020).

    CAS  Google Scholar 

  17. Chen, F.-Y. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 17, 759–767 (2022).

    CAS  Google Scholar 

  18. Wang, X. et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611, 702–708 (2022).

    CAS  Google Scholar 

  19. Cioncoloni, G. et al. Proton-coupled electron transfer enhances the electrocatalytic reduction of nitrite to NO in a bioinspired copper complex. ACS Catal. 8, 5070–5084 (2018).

    CAS  Google Scholar 

  20. Sen, F. G., Alpas, A. T., van Duin, A. C. T. & Qi, Y. Oxidation-assisted ductility of aluminium nanowires. Nat. Commun. 5, 3959 (2014).

    CAS  Google Scholar 

  21. Wu, Z.-Z. et al. Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 144, 259–269 (2022).

    CAS  Google Scholar 

  22. Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).

    CAS  Google Scholar 

  23. Daiyan, R. et al. Nitrate reduction to ammonium: from CuO defect engineering to waste NOx-to-NH3 economic feasibility. Energy Environ. Sci. 14, 3588–3598 (2021).

    CAS  Google Scholar 

  24. Liu, B. et al. Metal 3D nanoprinting with coupled fields. Nat. Commun. 14, 4920 (2023).

    CAS  Google Scholar 

  25. Chattot, R. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–833 (2018).

    CAS  Google Scholar 

  26. Panwisawas, C., Tang, Y. T. & Reed, R. C. Metal 3D printing as a disruptive technology for superalloys. Nat. Commun. 11, 2327 (2020).

    CAS  Google Scholar 

  27. Ge, J. et al. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat. Nanotechnol. 12, 434–440 (2017).

    CAS  Google Scholar 

  28. Okulov, I. V. et al. Flash joule heating for ductilization of metallic glasses. Nat. Commun. 6, 7932 (2015).

    CAS  Google Scholar 

  29. Qiang, G. et al. Synthesis of core/shell nanocrystals with ordered intermetallic single-atom alloy layers for nitrate electroreduction to ammonia. Nat. Synthesis 2, 624–634 (2023).

    Google Scholar 

  30. Xu, B., Chen, Z., Zhang, G. & Wang, Y. On-demand atomic hydrogen provision by exposing electron-rich cobalt sites in an open-framework structure toward superior electrocatalytic nitrate conversion to dinitrogen. Environ. Sci. Technol. 56, 614–623 (2022).

    CAS  Google Scholar 

  31. Fang, J.-Y. et al. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 13, 7899 (2022).

    CAS  Google Scholar 

  32. Ataka, K.-i, Yotsuyanagi, T. & Osawa, M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. 100, 10664–10672 (1996).

    CAS  Google Scholar 

  33. Bu, Y. et al. Electrical pulse-driven periodic self-repair of Cu–Ni tandem catalyst for efficient ammonia synthesis from nitrate. Angew. Chem. Int. Ed. 62, e202217337 (2023).

    CAS  Google Scholar 

  34. Deng, Y., Handoko, A. D., Du, Y., Xi, S. & Yeo, B. S. In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of CuIII oxides as catalytically active species. ACS Catal. 6, 2473–2481 (2016).

    CAS  Google Scholar 

  35. Faid, A. Y., Barnett, A. O., Seland, F. & Sunde, S. Ni/NiO nanosheets for alkaline hydrogen evolution reaction: in situ electrochemical–Raman study. Electrochim. Acta 361, 137040 (2020).

    CAS  Google Scholar 

  36. Kang, X. et al. A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer. Nat. Commun. 14, 3607 (2023).

    CAS  Google Scholar 

  37. Peng, J. et al. Surface coordination layer passivates oxidation of copper. Nature 586, 390–394 (2020).

    CAS  Google Scholar 

  38. Chuang, Y.-H. et al. Critical role of trichloramine interaction with dichloramine for N-nitrosamine formation during breakpoint chlorination. Environ. Sci. Technol. 57, 15232–15242 (2023).

    CAS  Google Scholar 

  39. Pang, R., Miseki, Y., Okunaka, S. & Sayama, K. Photocatalytic production of hypochlorous acid over Pt/WO3 under simulated solar light. ACS Sustain. Chem. Eng. 8, 8629–8637 (2020).

    CAS  Google Scholar 

  40. Cross, J. H. Reevaluation of the employment of Fick’s law for diffusion dosimeters. Environ. Sci. Technol. 37, 1633–1638 (2003).

    CAS  Google Scholar 

  41. Peng, W., Xiao, L., Huang, B., Zhuang, L. & Lu, J. Inhibition effect of surface oxygenated species on ammonia oxidation reaction. J. Phys. Chem. C 115, 23050–23056 (2011).

    CAS  Google Scholar 

  42. Kumar, A., Phillips, K. R., Thiel, G. P., Schröder, U. & Lienhard, J. H. Direct electrosynthesis of sodium hydroxide and hydrochloric acid from brine streams. Nat. Catal. 2, 106–113 (2019).

    CAS  Google Scholar 

  43. Zhang, C. et al. Capillary effect-enabled water electrolysis for enhanced electrochemical ozone production by using bulk porous electrode. J. Am. Chem. Soc. 139, 16620–16629 (2017).

    CAS  Google Scholar 

  44. Baker, D. V., Bao, C. & Kim, W. S. Highly conductive 3D printable materials for 3D structural electronics. ACS Appl. Electron. Mater. 3, 2423–2433 (2021).

    CAS  Google Scholar 

  45. Yu, Z. J., Carpenter, J. V. & Holman, Z. C. Techno-economic viability of silicon-based tandem photovoltaic modules in the United States. Nat. Energy 3, 747–753 (2018).

    CAS  Google Scholar 

  46. Wang, Y., Levis, J. W. & Barlaz, M. A. Life-cycle assessment of a regulatory compliant US municipal solid waste landfill. Environ. Sci. Technol. 55, 13583–13592 (2021).

    CAS  Google Scholar 

  47. Zhang, Y. et al. Designing magnesium phosphate cement for stabilization/solidification of Zn-rich electroplating sludge. Environ. Sci. Technol. 56, 9398–9407 (2022).

    CAS  Google Scholar 

  48. Yuan, W. et al. Understanding of adopting flat-top laser in laser powder bed fusion processed Inconel 718 alloy: simulation of single-track scanning and experiment. J. Mater. Res. Technol. 16, 1388–1401 (2022).

    CAS  Google Scholar 

  49. Yuan, W., Chen, H., Cheng, T. & Wei, Q. Effects of laser scanning speeds on different states of the molten pool during selective laser melting: simulation and experiment. Mater. Des. 189, 108542 (2020).

    Google Scholar 

  50. Zhang, G. et al. Source data for ‘Ammonia recovery from nitrate-rich wastewater using a membrane-free electrochemical system’. figshare https://doi.org/10.6084/m9.figshare.26134027 (2024).

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (grant no. 52221004 to H.L., 22022606 to G. Zhang). We thank B. Xu and Y. Wang from Tongji University for their helpful suggestions with in situ DEMS measurement, L. Liu from Nanjing University for assistance in DFT calculation, and B. Zhang from Beijing University of Science and Technology for help in the 3D printing process. We thank F. Xu from Suzhou Suwater Environmental Science and Technology Co., Ltd for the real electroplating wastewater treatment.

Author information

Authors and Affiliations

Contributions

H.L. directed the project. G. Zhang designed the experiments. G. Zhang, J.M. and B.L. performed materials synthesis, beach-scale degradation experiments and electrochemical experiments. B.L., Q.J. and Y.S. analysed the results of FTIR and DEMS experiments. S.Y. and W.Y. performed the physics-based modelling approach for the 3D printing process. S.M. and B.L. performed the resourceful treatment on a real electroplating wastewater. G. Zhou and W.-J.F. carried out and analysed the DFT calculations. Q.Z., G. Zhang, B.L. and J.M. performed LCA analysis. G. Zhang, B.L., Y.S., W.-J.F., G. Zhou, Q.J. and J.Q. wrote the paper.

Corresponding authors

Correspondence to Gang Zhou or Huijuan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Huiyuan Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–47, Tables 1–13 and Discussion.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Li, B., Shi, Y. et al. Ammonia recovery from nitrate-rich wastewater using a membrane-free electrochemical system. Nat Sustain 7, 1251–1263 (2024). https://doi.org/10.1038/s41893-024-01406-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-024-01406-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing