Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient syngas conversion via catalytic shunt

Abstract

Catalytic syngas conversion has the potential to improve the sustainability of chemical products. However, balancing high catalytic activity with selectivity is challenging because the complex interactions among intermediates across various active sites can trigger competing reactions. To address this challenge, we introduce a catalytic shunt strategy that redirects intermediates in a multifunctional catalytic system to guide interdependent reaction pathways. The key to this catalytic shunt strategy is modulating the adsorption of the intermediates across different activity domains. By tuning Mo–O coordination numbers of single atoms in a bifunctional catalyst, we achieve over 80% selectivity for aromatics and a carbon monoxide conversion surpassing 70%, with aromatics yields of over 40%. By absorbing the intermediates on the first activity domain, the shunt pathway prevents their participation in subsequent reactions, thereby boosting methane production with selectivity above 93% and carbon monoxide conversion exceeding 50%. This catalytic shunt strategy also showcases versatility across other bifunctional systems for producing gasoline and light olefins. Overall, this study provides a viable approach for tackling the activity–selectivity trade-off in catalytic syngas conversion, removing a major barrier preventing its practical implementation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The catalytic system design inspired by a biosystem.
Fig. 2: Structure identification of single-atom Mo–Ox.
Fig. 3: Catalytic performance by introducing catalytic shunt strategy.
Fig. 4: The desorption behaviour of intermediates over the bifunctional system.
Fig. 5: Mechanistic study of reaction networks over two activity domains.
Fig. 6: Catalytic shunt strategy for other bifunctional systems with different activity domain II.

Similar content being viewed by others

Data availability

All data are available in the manuscript or the Supplementary Information. Additional data are available from the corresponding authors upon reasonable request. The structure part of ZnCrOx can be found at https://legacy.materialsproject.org/.

References

  1. Guan, Q. et al. Bimetallic monolayer catalyst breaks the activity–selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nat. Catal. 4, 840–849 (2021).

    Article  CAS  Google Scholar 

  2. Gu, J. et al. Synergizing metal–support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nat. Nanotechnol. 16, 1141–1149 (2021).

    Article  CAS  Google Scholar 

  3. Xie, J. et al. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem. Sci. 5, 4615–4620 (2014).

    Article  CAS  Google Scholar 

  4. Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Sustain. 5, 563–573 (2022).

    Article  Google Scholar 

  5. Chen, Y. et al. Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity. Joule 5, 3235–3251 (2021).

    Article  CAS  Google Scholar 

  6. Chang, X. et al. Designing single-site alloy catalysts using a degree-of-isolation descriptor. Nat. Nanotechnol. 18, 611–616 (2023).

    Article  CAS  Google Scholar 

  7. Pérez-Ramírez, J. & López, N. Strategies to break linear scaling relationships. Nat. Catal. 2, 971–976 (2019).

    Article  Google Scholar 

  8. Craig, M. J. et al. Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential. Nat. Commun. 10, 4993 (2019).

    Article  Google Scholar 

  9. Sun, G. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 9, 4454 (2018).

    Article  Google Scholar 

  10. Zhao, Z.-J. et al. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 4, 792–804 (2019).

    Article  Google Scholar 

  11. Jiao, F. et al. Disentangling the activity-selectivity trade-off in catalytic conversion of syngas to light olefins. Science 380, 727–730 (2023).

    Article  CAS  Google Scholar 

  12. Zhai, P. et al. Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer–Tropsch route. Chem 7, 3027–3051 (2021).

    Article  CAS  Google Scholar 

  13. Lee, J. W. et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8, 536–546 (2012).

    Article  CAS  Google Scholar 

  14. Schuster, S., Fell, D. A. & Dandekar, T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18, 326–332 (2000).

    Article  CAS  Google Scholar 

  15. Zhao, Q. et al. A severe leakage of intermediates to shunt products in acarbose biosynthesis. Nat. Commun. 11, 1468 (2020).

    Article  CAS  Google Scholar 

  16. Fait, A., Fromm, H., Walter, D., Galili, G. & Fernie, A. R. Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci. 13, 14–19 (2008).

    Article  CAS  Google Scholar 

  17. Dolan, S. K. & Welch, M. The glyoxylate shunt, 60 years on. Annu. Rev. Microbiol. 72, 309–330 (2018).

    Article  CAS  Google Scholar 

  18. Ahn, S., Jung, J., Jang, I.-A., Madsen, E. L. & Park, W. Role of glyoxylate shunt in oxidative stress response. J. Biol. Chem. 291, 11928–11938 (2016).

    Article  CAS  Google Scholar 

  19. Walsh, K. & Koshland, D. E. Determination of flux through the branch point of two metabolic cycles. The tricarboxylic acid cycle and the glyoxylate shunt. J. Biol. Chem. 259, 9646–9654 (1984).

    Article  CAS  Google Scholar 

  20. Cronan Jr., J. E. & Laporte, D. Tricarboxylic acid cycle and glyoxylate bypass. EcoSal Plus https://doi.org/10.1128/ecosalplus.3.5.2 (2005).

  21. Ji, Y. et al. Oxygenate-based routes regulate syngas conversion over oxide–zeolite bifunctional catalysts. Nat. Catal. 5, 594–604 (2022).

    Article  CAS  Google Scholar 

  22. Yang, J., Pan, X., Jiao, F., Li, J. & Bao, X. Direct conversion of syngas to aromatics. Chem. Commun. 53, 11146–11149 (2017).

    Article  CAS  Google Scholar 

  23. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  CAS  Google Scholar 

  24. Li, M. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019).

    Article  CAS  Google Scholar 

  25. Mao, J. et al. Direct conversion of methane with O2 at room temperature over edge-rich MoS2. Nat. Catal. 6, 1052–1061 (2023).

    Article  CAS  Google Scholar 

  26. Hu, J. et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal. 4, 242–250 (2021).

    Article  CAS  Google Scholar 

  27. Hu, J. et al. Edge-rich molybdenum disulfide tailors carbon-chain growth for selective hydrogenation of carbon monoxide to higher alcohols. Nat. Commun. 14, 6808 (2023).

    Article  CAS  Google Scholar 

  28. Huang, R. et al. Acetylene hydrogenation to ethylene by water at low temperature on a Au/α-MoC catalyst. Nat. Catal. 6, 1005–1015 (2023).

    Article  CAS  Google Scholar 

  29. Michailovski, A. et al. Studying the solvothermal formation of MoO3 fibers by complementary in situ EXAFS/EDXRD techniques. Angew. Chem. Int. Ed. 44, 5643–5647 (2005).

    Article  CAS  Google Scholar 

  30. Huang, Z. et al. Ceria‐zirconia/zeolite bifunctional catalyst for highly selective conversion of syngas into aromatics. ChemCatChem 10, 4519–4524 (2018).

    Article  CAS  Google Scholar 

  31. Liu, C. et al. Insights into the key factor of zeolite morphology on the selective conversion of syngas to light aromatics over a Cr2O3/ZSM-5 catalyst. ACS Catal. 10, 15227–15237 (2020).

    Article  CAS  Google Scholar 

  32. Xiong, H. et al. In situ imaging of the sorption-induced subcell topological flexibility of a rigid zeolite framework. Science 376, 491–496 (2022).

    Article  CAS  Google Scholar 

  33. Yang, X., Su, X., Chen, D., Zhang, T. & Huang, Y. Direct conversion of syngas to aromatics: a review of recent studies. Chin. J. Catal. 41, 561–573 (2020).

    Article  CAS  Google Scholar 

  34. Kasipandi, S. & Bae, J. W. Recent advances in direct synthesis of value‐added aromatic chemicals from syngas by cascade reactions over bifunctional catalysts. Adv. Mater. 31, 1803390 (2019).

    Article  Google Scholar 

  35. Zhang, L. et al. Direct conversion of CO2 to a jet fuel over CoFe alloy catalysts. Innovation 2, 100170 (2021).

    CAS  Google Scholar 

  36. Yao, B. et al. Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst. Nat. Commun. 11, 6395 (2020).

    Article  CAS  Google Scholar 

  37. Arslan, M. T. et al. Highly selective conversion of CO2 or CO into precursors for kerosene-based aviation fuel via an aldol–aromatic mechanism. ACS Catal. 12, 2023–2033 (2022).

    Article  CAS  Google Scholar 

  38. Tan, M. et al. Probing hydrophobization of a Cu/ZnO catalyst for suppression of water–gas shift reaction in syngas conversion. ACS Catal. 11, 4633–4643 (2021).

    Article  CAS  Google Scholar 

  39. Zhu, P. et al. Direct conversion of methane to aromatics and hydrogen via a heterogeneous trimetallic synergistic catalyst. Nat. Commun. 15, 3280 (2024).

    Article  CAS  Google Scholar 

  40. Wang, C. et al. Fischer–Tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nat. Nanotechnol. 17, 714–720 (2022).

    Article  CAS  Google Scholar 

  41. Bai, B. et al. Tuning the crystal phase to form MnGaOx‐spinel for highly efficient syngas to light olefins. Angew. Chem. 135, e202217701 (2023).

    Article  Google Scholar 

  42. Wang, M. et al. Spinel nanostructures for the hydrogenation of CO2 to methanol and hydrocarbon chemicals. J. Am. Chem. Soc. 146, 14528–14538 (2024).

    Article  CAS  Google Scholar 

  43. D’Andria, M., Krumeich, F., Yao, Z., Wang, F. R. & Güntner, A. T. Structure–function relationship of highly reactive CuOx clusters on Co3O4 for selective formaldehyde sensing at low temperatures. Adv. Sci. 11, 2308224 (2024).

    Article  Google Scholar 

  44. Chen, X.-M. et al. In situ DRIFTS study on the partial oxidation of ethylene over Co-ZSM-5 catalyst. Catal. Commun. 10, 428–432 (2009).

    Article  CAS  Google Scholar 

  45. Ma, R. et al. Insights into the nature of selective nickel sites on Ni/Al2O3 catalysts for propane dehydrogenation. ACS Catal. 12, 12607–12616 (2022).

    Article  CAS  Google Scholar 

  46. Yang, L. et al. Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion. Nat. Commun. 12, 4661 (2021).

    Article  CAS  Google Scholar 

  47. Li, N. et al. High‐quality gasoline directly from syngas by dual metal oxide–zeolite (OX‐ZEO) catalysis. Angew. Chem. Int. Ed. 58, 7400–7404 (2019).

    Article  CAS  Google Scholar 

  48. Kim, H.-S. et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3–x. Nat. Mater. 16, 454–460 (2017).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  50. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  52. Ma, S., Huang, S.-D. & Liu, Z.-P. Dynamic coordination of cations and catalytic selectivity on zinc–chromium oxide alloys during syngas conversion. Nat. Catal. 2, 671–677 (2019).

    Article  CAS  Google Scholar 

  53. NIST Chemistry WebBook. NIST https://webbook.nist.gov/chemistry/ (2025).

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2022YFA1203301 to F.W.), the National Natural Science Foundation of China (22278238 to C.Z., 22238004 to F.W., 22275110 and 22322203 to X.C. and 52402053 to H.M.), the Key Research and Development Program of Inner Mongolia and Ordos (20211140095 to C.Z.) and the China National Petroleum Corporation Innovation Funds (2020990028 to C.Z.). This research was sponsored by the Tsinghua–Toyota Joint Research Fund (X.C. and F.W.). We acknowledge L. Song and S. Chen from the National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience at the University of Science and Technology of China for their discussions on the synchrotron X-ray absorption spectra data.

Author information

Authors and Affiliations

Authors

Contributions

G.T., C.Z., X.C. and F.W. designed the study. G.T., X.F. and D.L. synthesized the catalysts. G.T. and X.F. performed the catalytic tests. G.T., Z.L., D.L., X.F., K.S., N.W., X. Liang, H.X., H.M., S.Q., X.C., Z.L., H.-j.P., B.Y. and T.Y. conducted the characterizations. G.T., X. Liu and H.-j.P. contributed to the DFT calculations. G.T. wrote the paper. All the authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Chenxi Zhang, Xiao Chen or Fei Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Jong Wook Bae, José Antonio Odriozola and Feng-Shou Xiao for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–56, Tables 1–8 and References 1–42.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, G., Li, Z., Liao, D. et al. Efficient syngas conversion via catalytic shunt. Nat Sustain 8, 508–519 (2025). https://doi.org/10.1038/s41893-025-01551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01551-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing