Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Doubling of the global freshwater footprint of material production over two decades

Abstract

Producing essential, widely used materials such as steel, cement, paper, plastics and rubber requires substantial freshwater resources, which may exacerbate water scarcity. Despite this, comprehensive research on freshwater embodied in material production remains limited. Here we assess the blue water footprint (WFblue) of 16 metallic and non-metallic material categories across 164 regions, using a multiregional input–output model and the hypothetical extraction method. Our findings indicate that the global WFblue of material production doubled from 25.1 billion m3 in 1995 to 50.7 billion m3 in 2021, raising its share in global blue water consumption from 2.8% to 4.7%. The East, South Asia and Oceania regions saw an alarming 267% surge in WFblue for material production, with China—already facing medium-high water stress—experiencing a dramatic ~400% increase. As material production is expected to grow, we underscore the urgency of a water–materials nexus approach, particularly in water-stressed countries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global WFblue,MP from 1995 to 2021.
Fig. 2: Changes in the WFblue,MP across regions from 1995 to 2021.
Fig. 3: Spatial patterns of WFblue,MP at the national level from 1995 to 2021.
Fig. 4: The balance of virtual water in material production embodied in imports and exports of major trading regions.
Fig. 5: Virtual water flows of material production embodied in inter-regional trade.
Fig. 6: Contributions to the changes in WFblue,MP from 1995 to 2021.

Similar content being viewed by others

Data availability

All the raw data have been deposited at https://ielab.info/labs/ielab-gloria. Source data are provided with this paper.

Code availability

The environmentally extended MRIO model analysis was conducted using the method and code provided by the Australian IELab (https://ielab.info/) and Northeastern University, China. They are accessible from the authors upon reasonable request.

References

  1. Steffen, W., Grinevald, J., Crutzen, P. & McNeill, J. The Anthropocene: conceptual and historical perspectives. Philos. Trans. R. Soc. A 369, 842–867 (2011).

    Article  Google Scholar 

  2. Niazi, H. et al. Global peak water limit of future groundwater withdrawals. Nat. Sustain. 7, 413–422 (2024).

    Article  Google Scholar 

  3. Werner, A. D. et al. Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Res. 51, 3–26 (2013).

    Article  Google Scholar 

  4. Han, D., Post, V. E. A. & Song, X. Groundwater salinization processes and reversibility of seawater intrusion in coastal carbonate aquifers. J. Hydrol. 531, 1067–1080 (2015).

    Article  CAS  Google Scholar 

  5. Barlow, P. M. & Leake, S. A. Streamflow Depletion by Wells–Understanding and Managing the Effects of Groundwater Pumping on Streamflow (USGS, 2012); https://pubs.usgs.gov/circ/1376/pdf/circ1376_barlow_report_508.pdf

  6. Jasechko, S. et al. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 625, 715–721 (2024).

    Article  CAS  Google Scholar 

  7. Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    Article  CAS  Google Scholar 

  8. Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    Article  Google Scholar 

  9. Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).

    Article  Google Scholar 

  10. Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    Article  Google Scholar 

  11. Hoekstra, A. Y. in Assessing and Measuring Environmental Impact and Sustainability (ed. Klemeš, J. J.) 221–254 (Butterworth-Heinemann, 2015).

  12. Boretti, A. & Rosa, L. Reassessing the projections of the World Water Development Report. npj Clean Water 2, 15 (2019).

    Article  Google Scholar 

  13. Greenwood, E. E. et al. Mapping safe drinking water use in low- and middle-income countries. Science 385, 784–790 (2024).

    Article  CAS  Google Scholar 

  14. China Industry Statistical Yearbook (China Statistics, 2022).

  15. Hou, S. et al. Tracking grid-level freshwater boundary exceedance along global supply chains from consumption to impact. Nat. Water 3, 439–448 (2025).

    Article  Google Scholar 

  16. World Water Development Report 2024 (UNESCO, 2024); https://unesdoc.unesco.org/ark:/48223/pf0000388948

  17. The United Nations World Water Development Report 2014 (UN-Water, 2014).

  18. Arora, N. K. & Mishra, I. Sustainable development goal 6: global water security. Environ. Sustain. 5, 271–275 (2022).

    Article  Google Scholar 

  19. Grafton, R. Q. et al. Rethinking responses to the world’s water crises. Nat. Sustain. 8, 11–21 (2025).

    Article  Google Scholar 

  20. Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M. The Water Footprint Assessment Manual: Setting the Global Standard (Earthscan, 2011).

  21. Yang, H. & Zehnder, A. “Virtual water”: an unfolding concept in integrated water resources management. Water Resour. Res. 43, W12301 (2007).

  22. Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    Article  CAS  Google Scholar 

  23. Gerbens-Leenes, W., Hoekstra, A. Y. & van der Meer, T. H. The water footprint of bioenergy. Proc. Natl Acad. Sci. USA 106, 10219–10223 (2009).

    Article  CAS  Google Scholar 

  24. Hoekstra, A. Y. & Hung, P. Q. Globalisation of water resources: international virtual water flows in relation to crop trade. Glob. Environ. Change 15, 45–56 (2005).

    Article  Google Scholar 

  25. Mekonnen, M. M. et al. Trends and environmental impacts of virtual water trade. Nat. Rev. Earth Environ. 5, 890–905 (2024).

    Article  Google Scholar 

  26. Global Resources Outlook 2024: Bend the Trend—Pathways to a Liveable Planet as Resource Use Spikes (UNEP, 2024).

  27. Tzachor, A., Wang, H. & Richards, C. E. Addressing the excessive water consumption of materials manufacturing. Nat. Water 2, 4–7 (2024).

    Article  Google Scholar 

  28. Gerbens-Leenes, P. W., Hoekstra, A. Y. & Bosman, R. The blue and grey water footprint of construction materials: steel, cement and glass. Water Resour. Ind. 19, 1–12 (2018).

    Article  Google Scholar 

  29. Lutter, S., Pfister, S., Giljum, S., Wieland, H. & Mutel, C. Spatially explicit assessment of water embodied in European trade: a product-level multi-regional input–output analysis. Glob. Environ. Change 38, 171–182 (2016).

    Article  Google Scholar 

  30. Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).

    Article  Google Scholar 

  31. Zhang, Y. et al. Environmental footprint of aluminum production in China. J. Clean. Prod. 133, 1242–1251 (2016).

    Article  CAS  Google Scholar 

  32. Feng, K., Chapagain, A., Suh, S., Pfister, S. & Hubacek, K. Comparison of bottom-up and top-down approaches to calculating the water footprints of nations. Econ. Syst. Res. 23, 371–385 (2011).

    Article  Google Scholar 

  33. Lutter, S., Giljum, S. & Bruckner, M. A review and comparative assessment of existing approaches to calculate material footprints. Ecol. Econ. 127, 1–10 (2016).

    Article  Google Scholar 

  34. Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).

    Article  CAS  Google Scholar 

  35. Jiang, M. et al. Provincial and sector-level material footprints in China. Proc. Natl Acad. Sci. USA 116, 26484–26490 (2019).

    Article  CAS  Google Scholar 

  36. Lenzen, M. et al. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustain. 5, 157–166 (2022).

    Article  Google Scholar 

  37. Hertwich, E. G. Increased carbon footprint of materials production driven by rise in investments. Nat. Geosci. 14, 151–155 (2021).

    Article  CAS  Google Scholar 

  38. Matthews, H. S. & Small, M. J. Extending the boundaries of life-cycle assessment through environmental economic input–output models. J. Ind. Ecol. 4, 7–10 (2008).

    Article  Google Scholar 

  39. Mattila, T. J., Pakarinen, S. & Sokka, L. Quantifying the total environmental impacts of an industrial symbiosis—a comparison of process-, hybrid and input−output life cycle assessment. Environ. Sci. Technol. 44, 4309–4314 (2010).

    Article  CAS  Google Scholar 

  40. Lenzen, M. et al. The Global MRIO Lab—charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).

    Article  Google Scholar 

  41. World Steel in Figures (World Steel Association, 2024); https://worldsteel.org/data/world-steel-in-figures/

  42. Total Production of Paper and Paperboard in the United States from 1961 to 2023. Statista https://www.statista.com/statistics/252708/total-us-production-of-paper-and-board-2001-2010/ (2024).

  43. UN-Water SDG 6 Data Portal. UN https://sdg6data.org/index.php/en (2024).

  44. Lu, Y., Schandl, H., Wang, H. & Zhu, J. China’s pathway towards a net zero and circular economy: a model-based scenario analysis. Resour. Conserv. Recycl. 204, 107514 (2024).

    Article  Google Scholar 

  45. Pauliuk, S., Carrer, F., Heeren, N. & Hertwich, E. G. Scenario analysis of supply- and demand-side solutions for circular economy and climate change mitigation in the global building sector. J. Ind. Ecol. 28, 1699–1715 (2024).

    Article  Google Scholar 

  46. Ozcelik, N., Rodríguez, M., Sartal, A. & Lutter, S. Taking away the economic “water productivity” illusion: an indicator inapt to inform meaningful water policies. Ecol. Indic. 165, 112220 (2024).

    Article  Google Scholar 

  47. Hasanbeigi, A. & Price, L. A technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry. J. Clean. Prod. 95, 30–44 (2015).

    Article  CAS  Google Scholar 

  48. Hu, J.-L., Wang, S.-C. & Yeh, F.-Y. Total-factor water efficiency of regions in China. Resour. Policy 31, 217–230 (2006).

    Article  Google Scholar 

  49. SEEA-Water-System of Environmental-Economic Accounting for Water (UN, 2012).

  50. Manual for Physical Water Flow Accounts (Version 2014) (Eurostat, 2014); https://ec.europa.eu/eurostat/documents/1798247/6664269/Manual+for+Physical+Water+Flow+Accounts+%28draft+version+18+Nov+2014%29.pdf

  51. Motoshita, M. et al. Responsibility for sustainable water consumption in the global supply chains. Resour. Conserv. Recycl. 196, 107055 (2023).

    Article  Google Scholar 

  52. Results of the 2024 Global Assessment of Environmental-Economic Accounting and Supporting Statistics (UN, 2024); https://unstats.un.org/UNSDWebsite/statcom/session_56/documents/BG-3j-UNSC_2025_Results_2024_Global_Assessment-E.pdf

  53. Wang, X. et al. Water-energy-carbon nexus assessment of China’s iron and steel industry: case study from plant level. J. Clean. Prod. 253, 119910 (2020).

    Article  Google Scholar 

  54. Zuiderveen, E. A. R. et al. The potential of emerging bio-based products to reduce environmental impacts. Nat. Commun. 14, 8521 (2023).

    Article  CAS  Google Scholar 

  55. Oyejobi, D. O., Firoozi, A. A., Fernández, D. B. & Avudaiappan, S. Integrating circular economy principles into concrete technology: enhancing sustainability through industrial waste utilization. Results Eng 24, 102846 (2024).

    Article  CAS  Google Scholar 

  56. Lutter, S., Sevenster M., Piñero P. & Giljum S. National Hotspots Analysis to Support Science-based National Policy Frameworks for Sustainable Consumption and Production. Technical documentation of the Sustainable Consumption and Production Hotspots Analysis Tool (SCP- HAT) Version 3.0. (UN, 2024); https://scp-hat.org/wp-content/uploads/2024/05/SCP-HAT-3.0_Technical-documentation_May2024.pdf

  57. Cabernard, L. & Pfister, S. A highly resolved MRIO database for analyzing environmental footprints and Green Economy Progress. Sci. Total Environ. 755, 142587 (2021).

    Article  CAS  Google Scholar 

  58. Duarte, R., Sánchez-Chóliz, J. & Bielsa, J. Water use in the Spanish economy: an input–output approach. Ecol. Econ. 43, 71–85 (2002).

    Article  Google Scholar 

  59. Hertwich, E. G., Koslowski, M. & Rasul, K. Linking hypothetical extraction, the accumulation of production factors, and the addition of value. J. Ind. Ecol. 28, 736–750 (2024).

    Article  Google Scholar 

  60. Zhao, C. & Chen, B. Driving force analysis of the agricultural water footprint in China based on the LMDI method. Environ. Sci. Technol. 48, 12723–12731 (2014).

    Article  CAS  Google Scholar 

  61. Ang, B. W. LMDI decomposition approach: a guide for implementation. Energy Policy 86, 233–238 (2015).

    Article  Google Scholar 

  62. Stadler, K. et al. EXIOBASE 3: developing a time series of detailed environmentally extended multi-regional input–output tables. J. Ind. Ecol. 22, 502–515 (2018).

    Article  Google Scholar 

  63. Schulte, S., Jakobs, A. & Pauliuk, S. Estimating the uncertainty of the greenhouse gas emission accounts in global multi-regional input–output analysis. Earth Syst. Sci. Data 16, 2669–2700 (2024).

    Article  Google Scholar 

  64. Eurostat Manual of Supply, Use and Input-Output Tables (Eurostat, 2008); https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-ra-07-013

  65. Pfister, S., Bayer, P., Koehler, A. & Hellweg, S. Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environ. Sci. Technol. 45, 5761–5768 (2011).

    Article  CAS  Google Scholar 

  66. Pfister, S. & Bayer, P. Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production. J. Clean. Prod. 73, 52–62 (2014).

    Article  Google Scholar 

  67. Flörke, M. et al. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study. Glob. Environ. Change 23, 144–156 (2013).

    Article  Google Scholar 

  68. World Development Indicators. World Bank https://databank.worldbank.org/source/world-development-indicators (2024).

  69. Sachs, J. D., Lafortune, G., Fuller, G. & Drumm, E. Sustainable Development Report 2023: Implementing the SDG Stimulus (Dublin Univ. Press, 2023).

  70. World Bank country classifications by income level. World Bank https://blogs.worldbank.org/en/opendata/world-bank-country-classifications-by-income-level-for-2024-2025 (2024).

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (no. 52070034 and 52470207 received by H.W., 52325005 and 72293602 received by S. Liang and 72074193 received by K.F.). H.W. acknowledged financial support from the China Scholarship Council (no. 202306080047). H.W. and F.M. acknowledged support from the European Union under Horizon EU project LearnData (no. 101086712). A.T. acknowledged support from the Yannay Institute for Energy Security. We sincerely thank Mengyu Li from the University of Sydney for her support with the 2019–2021 blue water satellite account data.

Author information

Authors and Affiliations

Authors

Contributions

H.W., A.T., Y.W. and F.M. conceived the study. Y.W. and F.M. conducted modelling and analysis, with support from E.G.H., M.L., S. Lutter., S. Liang, K.F. and B.Z. on analytical approaches and from S. Lutter, M.L., M.J. and H.S. on datasets. S. Lutter, E.G.H., M.L. H.S., B.Z., S. Liang and K.F. advised on the policy implications. Y.W., A.T., H.W. and F.M. led the writing with input from all co-authors. All co-authors reviewed and commented on the paper.

Corresponding authors

Correspondence to Heming Wang or Asaf Tzachor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks R. Quentin Grafton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Results, Figs. 1–37, Tables 1–13 and Refs. 1–61.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ma, F., Wang, H. et al. Doubling of the global freshwater footprint of material production over two decades. Nat Sustain 8, 1554–1566 (2025). https://doi.org/10.1038/s41893-025-01661-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01661-2

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene