Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Human exposure risk via algae-induced transfer of tritiated water in the marine food chain

Abstract

Understanding the health impact of human radiation exposure from tritiated water release is crucial for the management and sustainability of nuclear energy. However, it remains not fully explored owing to the neglect of bioconversion products (organically bound tritium, OBT) along the food chain. Here by evaluating the uptake and chemical transfer of tritium in biota, we show the critical role of algae in rapidly incorporating and transferring tritiated water into OBT, which serves as nutrients for trophic transfer to fish. Notably, the specific retention of OBT in the fish brain, by integrating into biomolecules, potentially disrupts key metabolic reactions. The derived concentration factors and biomagnification factors are instrumental in estimating the internal exposure dose to human individuals, thereby enabling more accurate risk assessments for both planned tritium releases and accidental leakages. This work highlights the importance of comprehensive evaluation and mitigation of tritium exposure risks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HTO organification by algae.
Fig. 2: The enrichment and transfer of 3H through exposure of HTO or 3H-algae (tritiated D. salina) to brine shrimp.
Fig. 3: The enrichment and transformation of 3H through exposure of HTO or 3H-brine shrimp (tritiated brine shrimp) to medaka.
Fig. 4: Blending of 3H in amino acids.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information files. Source data are provided with this paper.

References

  1. Fiévet, B. et al. Transfer of tritium released into the marine environment by French nuclear facilities bordering the English Channel. Environ. Sci. Technol. 47, 6696–6703 (2013).

    Article  Google Scholar 

  2. Normile, D. The trouble with tritium. Science 346, 1278 (2014).

    Article  CAS  Google Scholar 

  3. Momoshima, N. Tritium in the environment. Radiat. Prot. Dosimetry 198, 896–903 (2022).

    Article  CAS  Google Scholar 

  4. Kong, T. Y., Kim, S., Lee, Y., Son, J. K. & Maeng, S. J. Radioactive effluents released from Korean nuclear power plants and the resulting radiation doses to members of the public. Nucl. Eng. Technol. 49, 1772–1777 (2017).

    Article  CAS  Google Scholar 

  5. Gagnaire, B. et al. Tritiated water exposure in zebrafish (Danio rerio): effects on the early-life stages. Environ. Toxicol. Chem. 39, 648–658 (2020).

    Article  CAS  Google Scholar 

  6. Buesseler, K. O. Opening the floodgates at Fukushima. Science 369, 621–622 (2020).

    Article  CAS  Google Scholar 

  7. Rodgers, D. W. Tritium dynamics in juvenile rainbow trout, Salmo gairdneri. Health Phys. 50, 89–98 (1986).

    Article  CAS  Google Scholar 

  8. Huang, Y. et al. Assessing OBT formation and enrichment: ROS signaling is involved in the radiation hormesis induced by tritium exposure in algae. J. Hazard. Mater. 443, 130159 (2023).

    Article  CAS  Google Scholar 

  9. Kashiwaya, K. et al. Spatial variations of tritium concentrations in groundwater collected in the southern coastal region of Fukushima, Japan, after the nuclear accident. Sci. Rep. 7, 12578 (2017).

    Article  Google Scholar 

  10. Huang, L. et al. Effect of the Fukushima nuclear accident on the risk perception of residents near a nuclear power plant in China. Proc. Natl Acad. Sci. USA 110, 19742–19747 (2013).

    Article  CAS  Google Scholar 

  11. Little, M. P., Wakeford, R., Bouville, A. & Simon, S. L. Measurement of Fukushima-related radioactive contamination in aquatic species. Proc. Natl Acad. Sci. USA 113, 3720–3721 (2016).

    Article  CAS  Google Scholar 

  12. Buesseler, K. et al. Fukushima Daiichi-derived radionuclides in the ocean: transport, fate, and impacts. Ann. Rev. Mar. Sci. 9, 173–203 (2017).

    Article  Google Scholar 

  13. Kaizer, J. et al. Tritium and radiocarbon in the western North Pacific waters: post-Fukushima situation. J. Environ. Radioact. 184–185, 83–94 (2018).

    Article  Google Scholar 

  14. Povinec, P. P. et al. Impact of the Fukushima accident on tritium, radiocarbon and radiocesium levels in seawater of the western North Pacific Ocean: a comparison with pre-Fukushima situation. J. Environ. Radioact. 166, 56–66 (2017).

    Article  CAS  Google Scholar 

  15. Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment. Report no. 422 (IAEA, 2004).

  16. Eyrolle, F. et al. An updated review on tritium in the environment. J. Environ. Radioact. 181, 128–137 (2018).

    Article  CAS  Google Scholar 

  17. Le Goff, P. et al. Isotopic fractionation of tritium in biological systems. Environ. Int. 65, 116–126 (2014).

    Article  Google Scholar 

  18. Baeza, A. et al. A study of the comparative dynamics of the incorporation of tissue free-water tritium (TFWT) in bulrushes (Typha latifolia) and carp (Cyprinus carpio) in the Almaraz nuclear power plant cooling reservoir. J. Environ. Radioact. 100, 209–214 (2009).

    Article  CAS  Google Scholar 

  19. Hagger, J. A. et al. Genotoxic, cytotoxic, developmental and survival effects of tritiated water in the early life stages of the marine mollusc, Mytilus edulis. Aquat. Toxicol. 74, 205–217 (2005).

    Article  CAS  Google Scholar 

  20. Kim, S. B. et al. Tritium uptake in rainbow trout (Oncorhynchus mykiss): HTO and OBT-spiked feed exposures simultaneously. Appl. Radiat. Isot. 98, 96–102 (2015).

    Article  Google Scholar 

  21. Dallas, L. J. et al. Radiation dose estimation for marine mussels following exposure to tritium: best practice for use of the ERICA tool in ecotoxicological studies. J. Environ. Radioact. 155–156, 1–6 (2016).

    Article  Google Scholar 

  22. Baiocco, G. et al. A 3D in vitro model of the human airway epithelium exposed to tritiated water: dosimetric estimate and cytotoxic effects. Radiat. Res. 195, 265–274 (2021).

    CAS  Google Scholar 

  23. Festarini, A. et al. Cellular responses in rainbow trout (Oncorhynchus mykiss) reared in tritiated water and/or fed organically bound tritium. Appl. Radiat. Isot. 151, 217–225 (2019).

    Article  CAS  Google Scholar 

  24. Beaton, E. D. et al. Correlated responses for DNA damage, phagocytosis activity and lysosomal function revealed in a comparison between field and laboratory studies: fathead minnow exposed to tritium. Sci. Total Environ. 662, 990–1002 (2019).

    Article  CAS  Google Scholar 

  25. Kim, S. B. et al. Distribution of organically bound tritium (OBT) activity concentrations in aquatic biota from eastern Canada. J. Environ. Radioact. 208, 105997 (2019).

    Article  Google Scholar 

  26. Gueguen, Y. et al. In vivo animal studies help achieve international consensus on standards and guidelines for health risk estimates for chronic exposure to low levels of tritium in drinking water. Environ. Mol. Mutagen. 59, 586–594 (2018).

    Article  CAS  Google Scholar 

  27. Li, S. et al. Integrative effects based on behavior, physiology and gene expression of tritiated water on zebrafish. Ecotoxicol. Environ. Saf. 225, 112770 (2021).

    Article  CAS  Google Scholar 

  28. The State of World Fisheries and Aquaculture Towards Blue Transformation (FAO, 2022).

  29. Galeriu, D. et al. The dynamics of tritium—including OBT—in the aquatic food chain. Fusion Sci. Technol. 48, 779–782 (2005).

    Article  CAS  Google Scholar 

  30. Maderich, V. et al. The POSEIDON-R compartment model for the prediction of transport and fate of radionuclides in the marine environment. MethodsX 5, 1251–1266 (2018).

    Article  CAS  Google Scholar 

  31. Nie, B. et al. A dynamic modeling 3H transfer to the environment under accidental release from the fusion reactor. J. Fusion Energy 34, 739–745 (2015).

    Article  CAS  Google Scholar 

  32. Jaeschke, B. C. et al. Bioaccumulation of tritiated water in phytoplankton and trophic transfer of organically bound tritium to the blue mussel, Mytilus edulis. J. Environ. Radioact. 115, 28–33 (2013).

    Article  CAS  Google Scholar 

  33. Eyrolle-Boyer, F. et al. Apparent enrichment of organically bound tritium in rivers explained by the heritage of our past. J. Environ. Radioact. 136, 162–168 (2014).

    Article  CAS  Google Scholar 

  34. Komatsu, K. et al. Accumulation of tritium in aquatic organisms through a food chain with three trophic levels. J. Radiat. Res. 22, 226–241 (1981).

    Article  CAS  Google Scholar 

  35. Eckerman, K. et al. ICRP Publication 119: compendium of dose coefficients based on ICRP Publication 60. Ann. ICRP 42, e1–e130 (2013).

    Article  Google Scholar 

  36. Paquet, F. et al. ICRP Publication 134: occupational intakes of radionuclides: part 2. Ann. ICRP 45, 7–349 (2016).

    Article  CAS  Google Scholar 

  37. Masuda, T. et al. Estimation of radiation dose from ingested tritium in humans by administration of deuterium-labelled compounds and food. Sci. Rep. 11, 2816 (2021).

    Article  CAS  Google Scholar 

  38. Strack, S. et al. Selective accumulation of organically bound tritium in the marine unicellular algae Dunaliella bioculata and Acetabularia mediterranea. Appl. Radiat. Isot. 34, 865–869 (1983).

    Article  CAS  Google Scholar 

  39. Dong, S. et al. Bioaccumulation of 14C-labeled graphene in an aquatic food chain through direct uptake or trophic transfer. Environ. Sci. Technol. 52, 541–549 (2018).

    Article  CAS  Google Scholar 

  40. Blaylock, B. G. et al. Tritium in the aquatic environment. Radiat. Prot. Dosimetry 16, 65–71 (1986).

    Article  CAS  Google Scholar 

  41. Whyte, J. N. C. et al. Influence of composition of Brachionus plicatilis and Artemia on growth of larval sablefish (Anoplopoma fimbria Pallas). Aquaculture 119, 47–61 (1994).

    Article  Google Scholar 

  42. Spalding, K. L. et al. Forensics: age written in teeth by nuclear tests. Nature 437, 333–334 (2005).

    Article  CAS  Google Scholar 

  43. Spalding, K. L. et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219–1227 (2013).

    Article  CAS  Google Scholar 

  44. Javed, I. et al. Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nat. Commun. 10, 3780 (2019).

    Article  Google Scholar 

  45. Bigeleisen, J. et al. Equilibrium isotope effects. Annu. Rev. Phys. Chem. 24, 407–440 (1973).

    Article  CAS  Google Scholar 

  46. Chalecka, M. et al. P5C as an interface of proline interconvertible amino acids and its role in regulation of cell survival and apoptosis. Int. J. Mol. Sci. 22, 11763 (2021).

    Article  CAS  Google Scholar 

  47. Anisimov, V. et al. ISOEFF98. A program for studies of isotope effects using Hessian modifications. J. Math. Chem. 26, 75–86 (1999).

    Article  CAS  Google Scholar 

  48. Nepachalovich, P. S. et al. The influence of H/D kinetic isotope effect on radiation-induced transformations of hydroxyl-containing compounds in aqueous solutions. Free Radic. Res. 54, 732–744 (2020).

    Article  CAS  Google Scholar 

  49. Ferreira, M. F. et al. Tritium: its relevance, sources and impacts on non-human biota. Sci. Total Environ. 876, 162816 (2023).

    Article  CAS  Google Scholar 

  50. Connan, O. et al. Flux of tritium from the sea to the atmosphere around a nuclear reprocessing plant: experimental measurements and modelling for the western English Channel. J. Environ. Radioact. 257, 107068 (2023).

    Article  CAS  Google Scholar 

  51. Discharges and Environmental Monitoring Annual Report 2021 (Sellafield Ltd, 2022); https://assets.publishing.service.gov.uk/media/6388d9278fa8f569fcaefd12/Discharges_and_Monitoring_Our_Environment_2021_ISSUED_301122.pdf

  52. Treated Water Portal Site (Tokyo Electric Power Company Holdings, Inc., 2025); https://www.tepco.co.jp/en/hd/decommission/data/analysis/pdf/2025/seawater_rapid_measurement_251004-e.pdf

  53. Liu, Y. et al. Discharge of treated Fukushima nuclear accident contaminated water: macroscopic and microscopic simulations. Natl Sci. Rev. 9, nwab209 (2021).

    Article  Google Scholar 

  54. Maderich, V. et al. Regional long-term model of radioactivity dispersion and fate in the northwestern Pacific and adjacent seas: application to the Fukushima Dai-ichi accident. J. Environ. Radioact. 131, 4–18 (2014).

    Article  CAS  Google Scholar 

  55. Maderich, V. et al. A critical review and update of modelling of treated water discharging from Fukushima Daiichi NPP. Mar. Pollut. Bull. 198, 115901 (2024).

    Article  CAS  Google Scholar 

  56. Bezhenar, R. et al. Planned release of contaminated water from the Fukushima storage tanks into the ocean: simulation scenarios of radiological impact for aquatic biota and human from seafood consumption. Mar. Pollut. Bull. 173, 112969 (2021).

    Article  CAS  Google Scholar 

  57. Vives i Batlle, J. The potential impact of marine discharges from Fukushima 10 years after the accident. Integr. Environ. Assess. Manag. 18, 1530–1538 (2022).

    Article  Google Scholar 

  58. Comprehensive Report on the Safety Review of the ALPS-Treated Water at the Fukushima Daiichi Nuclear Power Station (IAEA, 2023); https://www.iaea.org/sites/default/files/iaea_comprehensive_alps_report.pdf

  59. Nayak, S. R. et al. Determination of organically bound tritium (OBT) concentration in fish by thermal oxidation and liquid scintillation counting method. Health Phys. 120, 1–8 (2021).

    Article  CAS  Google Scholar 

  60. Lu, K. et al. Mineralization of few-layer graphene made it bioavailable in Chlamydomonas reinhardtii. Environ. Sci. Technol. 57, 15255–15265 (2023).

    Article  CAS  Google Scholar 

  61. Buesseler, K. O. et al. Fukushima-derived radionuclides in the ocean and biota off Japan. Proc. Natl Acad. Sci. USA 109, 5984–5988 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (22125602, 22341601, 22076078 and U2067215) and the Fundamental Research Funds for the Central Universities (021114380082).

Author information

Authors and Affiliations

Authors

Contributions

L.M. conceptualized and planned the project. S.D., K.L., Y.M., P.X. and L.Z. carried out figure preparation, the main experiments and data interpretation. S.D. and Y.Z. performed the model establishment. S.D. and Y.M. wrote the manuscript, with input from all authors. F.C., S.W., J.D. and Z.C. reviewed and supervised the manuscript. All authors analysed results and approved the final manuscript.

Corresponding author

Correspondence to Liang Mao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Hideki Kakiuchi, Xiangke Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results and Discussion, Figs. 1–12 and Table 1.

Reporting Summary

Source data

Source Data for Supplementary Figures

Source data for Figs. S1–S9 and S12.

Source Data for All Figures

Statistical source data for Figs. 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Lu, K., Miao, Y. et al. Human exposure risk via algae-induced transfer of tritiated water in the marine food chain. Nat Sustain 9, 153–163 (2026). https://doi.org/10.1038/s41893-025-01669-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01669-8

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene