Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Socioecological risks amplified by rising plant invasions in India

Abstract

Invasive plants, alongside other global changes, are transforming ecosystems globally. Strategic responses depend on monitoring invasions and arising socioecological risks particularly in the biodiverse and socioeconomically vulnerable regions. Using 16 years (2006–2022) of systematic monitoring over 277,000 km2 in India, we analyse the nexus between plant invasions and global changes, including propagule pressure, forest warming and drying, altered fire and herbivory dynamics and rapid land-use transformation. Annually, ~15,500 km2 of natural areas are invaded by at least one new species, exposing ~11,200 km2 of herbivore occupancy to forage loss. These invasions potentially limit resources for tiger food chains across ~5,950 km2 annually. Invasions have exposed 144 million people, 2.79 million livestock and 0.2 million km2 of smallholder agriculture to cascading impacts. By identifying socioecological risk hotspots for prioritizing investments, our findings offer critical insights to guide targeted restoration and safeguard biodiversity and vulnerable livelihoods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methodological framework of the study.
Fig. 2: Sixteen-year trends in invasive plant expansion.
Fig. 3: Effect size of the drivers of invasive plant distribution and expansion.
Fig. 4: Socioecological exposure to invasive alien plant expansion.
Fig. 5: High-risk zones for management priority.

Similar content being viewed by others

Data availability

The dataset is available via Zenodo at https://doi.org/10.5281/zenodo.17287410 (ref. 62).

References

  1. Roy, H. E. et al. Curbing the major and growing threats from invasive alien species is urgent and achievable. Nat. Ecol. Evol. 8, 1216–1223 (2024).

    Article  Google Scholar 

  2. Seebens, H. et al. Around the world in 500 years: inter-regional spread of alien species over recent centuries. Glob. Ecol. Biogeogr. 30, 1621–1632 (2021).

    Article  Google Scholar 

  3. Svenning, J.-C., Kerr, M. R., Mungi, N. A., Ordonez, A. & Riede, F. Defining the Anthropocene as a geological epoch captures human impacts’ triphasic nature to empower science and action. One Earth 7, 1678–1681 (2024).

    Article  Google Scholar 

  4. Bacher, S. et al. in IPBES Invasive Alien Species Assessment (eds Roy, H. E. et al.) Ch. 4 (IPBES, 2024); https://doi.org/10.5281/zenodo.10677193

  5. Fricke, E. C. & Svenning, J.-C. Accelerating homogenization of the global plant–frugivore meta-network. Nature 585, 74–78 (2020).

    Article  CAS  Google Scholar 

  6. IPBES. IPBES Invasive Alien Species Assessment: Full Report (IPBES, 2023); https://doi.org/10.5281/zenodo.10795593

  7. Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    Article  CAS  Google Scholar 

  8. Fedele, G., Donatti, C. I., Bornacelly, I. & Hole, D. G. Nature-dependent people: mapping human direct use of nature for basic needs across the tropics. Glob. Environ. Change 71, 102368 (2021).

    Article  Google Scholar 

  9. Mungi, N. A. et al. Alien plants and novel ecosystems in the greater tropics. Nat. Rev. Biodivers. 1, 515–531 (2025).

    Article  Google Scholar 

  10. McGeoch, M. A. et al. in IPBES Invasive Alien Species Assessment (eds Roy, H. E. et al.) Ch. 6 (IPBES, 2024); https://doi.org/10.5281/zenodo.10677227

  11. Lenzner, B. et al. Naturalized alien floras still carry the legacy of European colonialism. Nat. Ecol. Evol. 6, 1723–1732 (2022).

    Article  Google Scholar 

  12. Seebens, H. et al. in IPBES Invasive Alien Species Assessment (eds Roy, H. E. et al.) Ch. 2 (IPBES, 2024); https://doi.org/10.5281/zenodo.10677067

  13. IPCC Climate Change 2021: The Physical Science Basis (Cambridge Univ. Press, 2021); https://doi.org/10.1017/9781009157896.001

  14. Delavaux, C. S. et al. Native diversity buffers against severity of non-native tree invasions. Nature 621, 773–781 (2023).

    Article  CAS  Google Scholar 

  15. Mungi, N. A., Jhala, Y. V., Qureshi, Q., le Roux, E. & Svenning, J.-C. Megaherbivores provide biotic resistance against alien plant dominance. Nat. Ecol. Evol. 7, 1645–1653 (2023).

    Article  Google Scholar 

  16. Hulme, P. E. et al. in IPBES Invasive Alien Species Assessment (eds Roy, H. E. et al.) Ch. 3 (IPBES, 2024); https://doi.org/10.5281/zenodo.10677074

  17. Ordonez, A., Riede, F., Normand, S. & Svenning, J.-C. Towards a novel biosphere in 2300: rapid and extensive global and biome-wide climatic novelty in the Anthropocene. Philos. Trans. R. Soc. B 379, 20230022 (2024).

    Article  Google Scholar 

  18. Latombe, G. et al. A vision for global monitoring of biological invasions. Biol. Conserv. 213, 295–308 (2017).

    Article  Google Scholar 

  19. Jhala, Y. et al. Recovery of tigers in India: critical introspection and potential lessons. People Nat. 3, 281–293 (2021).

    Article  Google Scholar 

  20. Mungi, N. A., Qureshi, Q. & Jhala, Y. V. Distribution, drivers and restoration priorities of plant invasions in India. J. Appl. Ecol. 60, 2400–2412 (2023).

    Article  Google Scholar 

  21. Bawa, K. S. et al. Envisioning a biodiversity science for sustaining human well-being. Proc. Natl Acad. Sci. USA 117, 25951–25955 (2020).

    Article  CAS  Google Scholar 

  22. Nayak, R. et al. Bits and pieces: forest fragmentation by linear intrusions in India. Land Use Policy https://doi.org/10.1016/j.landusepol.2020.104619 (2020).

  23. Sudhakar Reddy, C. et al. Quantification and monitoring of deforestation in India over eight decades (1930–2013). Biodivers. Conserv. 25, 93–116 (2016).

    Article  Google Scholar 

  24. Rohini, P., Rajeevan, M. & Srivastava, A. K. On the variability and increasing trends of heat waves over India. Sci. Rep. 6, 26153 (2016).

    Article  CAS  Google Scholar 

  25. de Bont, J. et al. Impact of heatwaves on all-cause mortality in India: a comprehensive multi-city study. Environ. Int. 184, 108461 (2024).

    Article  Google Scholar 

  26. Mungi, N. A., Coops, N. C., Ramesh, K. & Rawat, G. S. How global climate change and regional disturbance can expand the invasion risk? Case study of Lantana camara invasion in the Himalaya. Biol. Invasions 20, 1849–1863 (2018).

    Article  Google Scholar 

  27. Rastogi, R., Qureshi, Q., Shrivastava, A. & Jhala, Y. V. Multiple invasions exert combined magnified effects on native plants, soil nutrients and alters the plant-herbivore interaction in dry tropical forest. For. Ecol. Manage. 531, 120781 (2023).

    Article  Google Scholar 

  28. Jhala, Y. V., Mungi, N. A., Gopal, R. & Qureshi, Q. Tiger recovery amid people and poverty. Science 387, 505–510 (2025).

    Article  CAS  Google Scholar 

  29. Kannan, R., Shackleton, C. M. & Shaanker, R. U. Invasive alien species as drivers in socio-ecological systems: local adaptations towards use of Lantana in southern India. Environ. Dev. Sustain. 16, 649–669 (2014).

    Article  Google Scholar 

  30. Mungi, N. A. et al. Identifying knowledge gaps in the research and management of invasive species in India. Biologia 74, 623–629 (2019).

    Article  Google Scholar 

  31. MacDougall, A. S. & Turkington, R. Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86, 42–55 (2005).

    Article  Google Scholar 

  32. Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).

    Article  Google Scholar 

  33. Sainath, P. Everybody Loves a Good Drought: Stories from India’s Poorest Districts (Penguin Books India, 1996).

  34. Carleton, T. A. Crop-damaging temperatures increase suicide rates in India. Proc. Natl Acad. Sci. USA 114, 8746–8751 (2017).

    Article  CAS  Google Scholar 

  35. Gharde, Y., Singh, P. K., Dubey, R. P. & Gupta, P. K. Assessment of yield and economic losses in agriculture due to weeds in India. Crop Prot. 107, 12–18 (2018).

    Article  Google Scholar 

  36. Ravi, R. & Krishnan, S. Invasive networks: an environmental history of the introduction of Prosopis juliflora to Banni grassland, India. Geoforum 157, 104144 (2024).

    Article  Google Scholar 

  37. Mungi, N. A., Qureshi, Q. & Jhala, Y. V. Expanding niche and degrading forests: key to the successful global invasion of Lantana camara (sensu lato). Glob. Ecol. Conserv. 23, e01080 (2020).

    Google Scholar 

  38. Jauni, M., Gripenberg, S. & Ramula, S. Non-native plant species benefit from disturbance: a meta-analysis. Oikos 124, 122–129 (2015).

    Article  Google Scholar 

  39. Evans, H. C. Parthenium hysterophorus: a review of its weed status and the possibilities for biological control. Biocontrol 18, 89N–98N (1997).

    Google Scholar 

  40. Babu, S., Love, A. & Babu, C. R. Ecological restoration of lantana-invaded landscapes in Corbett Tiger Reserve. India Ecol. Restor. 27, 467–477 (2009).

    Article  Google Scholar 

  41. Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Ann. Rev. Environ. Resour. 39, 125–159 (2014).

    Article  Google Scholar 

  42. Boonman, C. C. F. et al. More than 17,000 tree species are at risk from rapid global change. Nat. Commun. 15, 166 (2024).

    Article  CAS  Google Scholar 

  43. Mungi, N. A., Qureshi, Q. & Jhala, Y. V. Role of species richness and human impacts in resisting invasive species in tropical forests. J. Ecol. 109, 3308–3321 (2021).

    Article  Google Scholar 

  44. Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. London B 371, 20150305 (2016).

    Article  Google Scholar 

  45. Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Change Biol. 23, 235–244 (2017).

    Article  Google Scholar 

  46. Madhusudan, M. D. & Vanak, A. T. Mapping the distribution and extent of India's semi-arid open natural ecosystems. J. Biogeogr. 50, 1377–1387 (2022).

    Article  Google Scholar 

  47. Kannan, R., Shackleton, C. M. & Shaanker, R. U. Playing with the forest: invasive alien plants, policy and protected areas in India. Curr. Sci. 104, 1159–1165 (2013).

    Google Scholar 

  48. Sinha, A. et al. Understanding the efficacy of different techniques to manage Chromolaena odorata L., an invasive alien plant in the sub-Himalayan tall grasslands: toward grassland recovery. Ecol. Eng. 179, 106618 (2022).

    Article  Google Scholar 

  49. Mathur, V. B., Kaushik, M., Bist, S. S., Mungi, N. A. & Qureshi, Q. Management of Human-Wildlife Interaction and Invasive Alien Species in India (Wildlife Institute of India & Ministry of Environment, Forest and Climate Change, 2015).

  50. Aplet, G. H. & Mckinley, P. S. A portfolio approach to managing ecological risks of global change. Ecosyst. Health Sustain. 3, e01261 (2017).

    Article  Google Scholar 

  51. Mungi, N. A., Gloria, A. O., Rastogi, R. & Svenning, J.-C. Expanding the resist–accept–direct framework for developing nature-based solutions and societal adaptations to biological invasions. People Nat. 7, 1505–1520 (2025).

    Article  Google Scholar 

  52. Sankaran, K. et al. in IPBES Invasive Alien Species Assessment (eds Pagad, S. N. et al.) Ch. 5 (IPBES, 2024); https://doi.org/10.5281/zenodo.11437851

  53. Champion, H. & Seth, S. A Revised Survey of the Forest Types of India (The Manager of Publications, 1968).

  54. Jhala, Y. V., Qureshi, Q. & Gopal, R. Field Guide: Monitoring Tigers, Co-predators, Prey and Their Habitats (Wildlife Institute of India & National Tiger Conservation Authority, 2017).

  55. Jhala, Y. V. et al. Development and Implementation of MSTrIPES in Tiger Reserves 1–338 (Wildlife Institute of India & National Tiger Conservation Authority, 2019).

  56. Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article  Google Scholar 

  57. Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Article  Google Scholar 

  58. Han, Q. et al. Global long term daily 1 km surface soil moisture dataset with physics informed machine learning. Sci. Data 10, 101 (2023).

    Article  Google Scholar 

  59. MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence (Elsevier, 2017).

  60. Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Article  Google Scholar 

  61. Freeman, E. A. & Moisen, G. G. PresenceAbsence: presence-absence model evaluation. R package version 1.1.11. https://CRAN.R-project.org/package=PresenceAbsence (2023).

  62. Jhala, Y., Qureshi, Q. & Mungi, N. Trends in invasive plants in India. Zenodo https://doi.org/10.5281/zenodo.17287410 (2025).

Download references

Acknowledgements

We thank the National Tiger Conservation Authority, New Delhi for funding support (grant to Y.V.J. and Q.Q.) and Wildlife Institute of India, Dehradun, for facilitating the study. We thank the State Forest Departments and researchers involved in the tiger project. We thank R. Gopal for constant support and encouragement. We thank Tiger cell, MSTrIPES team and SCIENCE, Dehradun, for all the support. Y.V.J. received the Indian National Science Academy (INSA) Senior Scientist scheme funding at the National Centre for Biological Sciences (NCBS) while writing the paper. We consider this work to also be a contribution to the Danish National Research Foundation Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) (grant DNRF173 to J.-C.S.) and VILLUM Investigator project ‘Biodiversity Dynamics in a Changing World’ (grant 16549 to J.-C.S.). We thank Earthkeeper for economic support via the Global South Biodiversity Leadership Project (grant GLOBALI to J.-C.S.).

Author information

Authors and Affiliations

Authors

Contributions

N.A.M., Y.V.J., J.-C.S. and Q.Q. conceptualized the study and formulated the general approach. Y.V.J. and Q.Q. administered the project and funding for sampling and data curation. J.-C.S. acquired funding for analysis and preparation of the paper. J.-C.S., Y.V.J. and Q.Q. supervised the study. N.A.M and Y.V.J. curated and analysed the data. N.A.M. drafted the paper, and J.-C.S., Y.V.J. and Q.Q. contributed to improve the drafts. All authors reviewed the contents and approved the final version.

Corresponding authors

Correspondence to Ninad Avinash Mungi or Yadvendradev V. Jhala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–16, Figs. 1–3 and References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mungi, N.A., Jhala, Y.V., Svenning, JC. et al. Socioecological risks amplified by rising plant invasions in India. Nat Sustain 9, 130–141 (2026). https://doi.org/10.1038/s41893-025-01690-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01690-x

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene