Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient urea electrosynthesis from CO2 and nitrate mediated by an ionic liquid bridge

Abstract

The electrochemical co-reduction of abundant carbon dioxide (CO2) and nitrates (NO3) offers a more sustainable strategy for synthesizing urea, which is a critical nitrogen source for fertilizers. However, constrained proton-coupled electron transfer and limited opportunity for C–N coupling lead to a low urea production rate. In this work, we incorporated ionic liquid and copper [Cu(II)] into the zeolitic imidazolate framework-8 to create the IL@Cu-ZIF-8 catalyst. The as-prepared catalyst demonstrates excellent performance for the co-reduction of CO2 and NO3 to urea. At −0.5 V versus the reversible hydrogen electrode, the production rate of urea can reach 140 μmol h−1 cm−2 (~42,000 mg h−1 gcat−1), with a Faradaic efficiency toward urea of 55.3%. A total of 0.53 g of pure urea was generated over a 25-cm2 IL@Cu-ZIF-8 electrode after 5 h of electrolysis. Mechanism studies show that ionic liquid within the catalyst acts as a molecular bridge, linking the active centres of the catalyst and reactants through versatile interactions, which increases the concentration of surface reactants and reduces the proton-coupled electron transfer barrier, thereby promoting C–N coupling for urea synthesis. This work introduces an efficient strategy for urea electrosynthesis with a high production rate, representing a significant step toward scalable electrochemical synthesis of nitrogen-containing compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterizations of Cu-ZIF-8 and IL-Cu-ZIF-8.
Fig. 2: Electrosynthesis urea over different electrodes in 1 M KOH + 0.1 M KNO3.
Fig. 3: Investigations of Cu-ZIF-8 and IL@Cu-ZIF-8 in 1 M KOH + 0.1 M KNO3.
Fig. 4: DFT calculations.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and Supplementary Information. Source data are provided with this paper.

References

  1. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  CAS  Google Scholar 

  2. Chen, C. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12, 717–724 (2020).

    Article  CAS  Google Scholar 

  3. Li, H. et al. Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst. Nat. Commun. 15, 8858 (2024).

    Article  CAS  Google Scholar 

  4. Huang, D. et al. Electrosynthesis of urea by using Fe2O3 nanoparticles encapsulated in a conductive metal–organic framework. Nat. Synth. 3, 1404–1413 (2024).

    Article  CAS  Google Scholar 

  5. Xiong, H. et al. Urea synthesis via electrocatalytic oxidative coupling of CO with NH3 on Pt. Nat. Catal. 7, 785–795 (2024).

    Article  CAS  Google Scholar 

  6. Luo, Y. et al. Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts. Nat. Catal. 6, 939–948 (2023).

    Article  CAS  Google Scholar 

  7. Li, J. et al. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).

    Article  CAS  Google Scholar 

  8. Zhao, Y. et al. Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites. Nat. Commun. 14, 4491–4502 (2023).

    Article  CAS  Google Scholar 

  9. Geng, J. et al. Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites. Angew. Chem. Int. Ed. 62, e202210958 (2023).

    Article  CAS  Google Scholar 

  10. Jiang, M. et al. Review on strategies for improving the added value and expanding the scope of CO2 electroreduction products. Chem. Soc. Rev. 53, 5149–5189 (2024).

    Article  CAS  Google Scholar 

  11. Lv, C. et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 4, 868–876 (2021).

    Article  Google Scholar 

  12. Zhang, Y. & Liang, H. Crystal facet engineering of electrocatalysts for nitrate reduction to ammonia: recent advances and future perspectives. Chem. Synth. 4, 39 (2024).

    Article  Google Scholar 

  13. Song, X. et al. Urea synthesis via coelectrolysis of CO2 and nitrate over heterostructured Cu–Bi catalysts. J. Am. Chem. Soc. 146, 25813–25823 (2024).

    Article  CAS  Google Scholar 

  14. Zhang, X. et al. Dynamic control of asymmetric charge distribution for electrocatalytic urea synthesis. Adv. Mater. 36, 2408510 (2024).

    Article  CAS  Google Scholar 

  15. Kohlhaas, Y. et al. Electrochemical urea synthesis. Joule 8, 1579–1600 (2024).

    Article  CAS  Google Scholar 

  16. Warburton, R. E., Soudackov, A. V. & Hammes-Schiffr, S. Theoretical modeling of electrochemical proton-coupled electron transfer. Chem. Rev. 122, 10599–10650 (2022).

    Article  CAS  Google Scholar 

  17. Chen, Q. et al. Microchemical engineering in a 3D ordered channel enhances electrocatalysis. J. Am. Chem. Soc. 143, 12600–12608 (2021).

    Article  CAS  Google Scholar 

  18. Jia, S. et al. Electrochemical conversion of CO2 via C−X bond formation: recent progress and perspective. Chem. Synth. 4, 60 (2024).

    Article  CAS  Google Scholar 

  19. Deng, T. et al. Phosphorus-doped Cu/Fe2O3 electrocatalysts with optimized synergy between the different sites for efficient urea electrosynthesis. J. Am. Chem. Soc. 147, 32924–32931 (2025).

    Article  CAS  Google Scholar 

  20. Cao, X., Cha, S. & Gong, M. Interfacial electrical double layer in electrocatalytic reactions: fundamentals, characterizations and applications. Acta Phys.-Chim. Sin. 41, 100041 (2025).

  21. Wordsworth, J. et al. The influence of nanoconfinement on electrocatalysis. Angew. Chem. Int. Ed. 61, e202200755 (2022).

    Article  CAS  Google Scholar 

  22. Tang, B. et al. Reaction environment impacts charge transfer but not chemical reaction steps in hydrogen evolution catalysis. Nat. Catal. 6, 339–350 (2023).

    Article  CAS  Google Scholar 

  23. Papangelakis, P. et al. Improving the SO2 tolerance of CO2 reduction electrocatalysts using a polymer/catalyst/ionomer heterojunction design. Nat. Energy 9, 1011–1020 (2024).

    Article  CAS  Google Scholar 

  24. Ji, K. et al. Steering selectivity in electrocatalytic furfural reduction via electrode–electrolyte interface modification. J. Am. Chem. Soc. 146, 11876–11886 (2024).

    Article  CAS  Google Scholar 

  25. Yang, Y. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023).

    Article  CAS  Google Scholar 

  26. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    Article  CAS  Google Scholar 

  27. Yoon, A. et al. Revealing catalyst restructuring and composition during nitrate electroreduction through correlated operando microscopy and spectroscopy. Nat. Mater. 24, 762–769 (2025).

    Article  CAS  Google Scholar 

  28. Yin, Y. et al. Highly efficient zinc electrode prepared by electro-deposition in a salt-induced pre-phase separation region solution. Sci. Bull. 68, 2362–2369 (2023).

    Article  CAS  Google Scholar 

  29. Ahmed, Y. et al. Interface modification by ionic liquid for efficient and stable FAPbI3 perovskite solar cells. Acta Phys.-Chim. Sin. 40, 2303057 (2024).

  30. Dupont, J. et al. Ionic liquids in metal, photo‑, electro‑, and (bio) catalysis. Chem. Rev. 124, 5227–5420 (2024).

    Article  CAS  Google Scholar 

  31. Qin, D. et al. Enhanced electrochemical nitrate-to-ammonia performance of cobalt oxide by protic ionic liquid modification. Angew. Chem. Int. Ed. 62, e202304935 (2023).

    Article  CAS  Google Scholar 

  32. Kiefer, J., Fries, J. & Leipertz, A. Experimental vibrational study of imidazolium-based ionic liquids: Raman and infrared spectra of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-ethyl-3-methylimidazolium ethylsulfate. Appl. Spectrosc. 61, 1306–1311 (2007).

    Article  CAS  Google Scholar 

  33. Ye, W. et al. A strongly coupled metal/hydroxide heterostructure cascades carbon dioxide and nitrate reduction reactions toward efficient urea electrosynthesis. Angew. Chem. Int. Ed. 63, e202410105 (2024).

    Article  CAS  Google Scholar 

  34. Wei, X. et al. Oxygen vacancy-mediated selective C–N coupling toward electrocatalytic urea synthesis. J. Am. Chem. Soc. 144, 11530–11535 (2022).

    Article  CAS  Google Scholar 

  35. Liu, Y. et al. C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis?. Angew. Chem. Int. Ed. 62, e202300387 (2023).

    Article  CAS  Google Scholar 

  36. Li, Y. et al. Sequential co-reduction of nitrate and carbon dioxide enables selective urea electrosynthesis. Nat. Commun. 15, 176 (2024).

    Article  Google Scholar 

  37. Qiu, W. et al. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew. Chem. Int. Ed. 63, e202402684 (2024).

    Article  CAS  Google Scholar 

  38. Zhang, Y. et al. Atomically dispersed Cu on In2O3 for relay electrocatalytic conversion of nitrate and CO2 to urea. ACS Nano 18, 25316–25324 (2024).

    Article  CAS  Google Scholar 

  39. Wang, Y. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

    Article  CAS  Google Scholar 

  40. Wang, Y. et al. Characterizing surface-confined interfacial water at graphene surface by in situ Raman spectroscopy. Joule 7, 1–11 (2023).

    Article  Google Scholar 

  41. Scatena, L. F., Brown, M. G. & Richmond, G. L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001).

    Article  CAS  Google Scholar 

  42. Chen, S. et al. Unveiling the proton-feeding effect in sulfur-doped Fe−N−C single-atom catalyst for enhanced CO2 electroreduction. Angew. Chem. Int. Ed. 61, e202206233 (2022).

    Article  CAS  Google Scholar 

  43. Li, J. et al. Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover. Energy Environ. Sci. 12, 2298–2304 (2019).

    Article  CAS  Google Scholar 

  44. Zhou, M. et al. Tailoring O-monodentate adsorption of CO2 initiates C−N coupling for efficient urea electrosynthesis with ultrahigh carbon atom economy. Angew. Chem. Int. Ed. 64, e202414392 (2024).

    Article  Google Scholar 

  45. Wang, Q. et al. Lanthanide single-atom catalysts for efficient CO2-to-CO electroreduction. Nat. Commun. 16, 2985 (2025).

    Article  CAS  Google Scholar 

  46. Xu, G. et al. Atomically precise Ni clusters inducing active NiN2 sites with uniform-large vacancies towards efficient CO2-to-CO conversion. Nat. Commun. 16, 3774 (2025).

    Article  CAS  Google Scholar 

  47. Zhong, J. et al. Cascade electrocatalytic reduction of nitrate to ammonia using bimetallic covalent organic frameworks with tandem active sites. Angew. Chem. Int. Ed. 137, e202507956 (2025).

    Article  Google Scholar 

  48. Ma, C. et al. Screening of intermetallic compounds based on intermediate adsorption equilibrium for electrocatalytic nitrate reduction to ammonia. J. Am. Chem. Soc. 146, 20069–20079 (2024).

    Article  CAS  Google Scholar 

  49. Jiao, J. et al. Lattice strain engineering boosts CO2 electroreduction to C2+ products. Angew. Chem. Int. Ed. 63, e202409563 (2024).

    Article  CAS  Google Scholar 

  50. Frisch, M. et al. Gaussian 16, Revision A.03 (Gaussian Inc., 2016).

  51. Wang, Y., Shah, F. U., Glavatskih, S., Antzutkin, O. N. & Laaksonen, A. Atomistic insight into orthoborate-based ionic liquids: force field development and evaluation. J. Phys. Chem. B 118, 8711–8723 (2014).

    Article  CAS  Google Scholar 

  52. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).

    Article  Google Scholar 

  53. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  54. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (grant nos. 22273108, 22033009, 22293015 and 22121002), the Beijing Natural Science Foundation (grant no. 2222043), the CAS Project for Young Scientists in Basic Research (grant no. YSBR-050), the ICCAS Carbon Neutral Chemistry Program (grant no. CCNC-202403), the Youth Innovation Promotion Association CAS (grant no. Y2022017) and the National Key Research and Development Program of China (grant no. 2023YFA1507400) for their financial support of this research. We thank the 1W1A and 1W2B beamlines of the Beijing Synchrotron Radiation Facility for providing technical support and assistance in SXRD and X-ray absorption spectroscopy data collection, respectively.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and Z.L.: syntheses and characterizations of catalysts. S.L, Y.W. and W.Z.: urea electrosynthesis experiments. H.W. and J.Y.: MD and DFT simulations. R.F., S.Z. and X.X.: collection and analysis of in situ ATR-SEIRAS spectra data. L.J., Q.Z., X. S. and J.Z.: mechanism analysis. X.K. and B.H.: overall design and direction of the project. Y.Y., X.K. and B.H.: preparation of the manuscript, with help from all authors.

Corresponding authors

Correspondence to Xinchen Kang or Buxing Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Liangzhi Kou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–40, Table 1 and Discussion.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Ling, Z., Liu, S. et al. Efficient urea electrosynthesis from CO2 and nitrate mediated by an ionic liquid bridge. Nat Sustain 9, 108–116 (2026). https://doi.org/10.1038/s41893-025-01703-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01703-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing