Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-corrosive organodichloro electrolyte for reversible aluminium metal batteries

Subjects

Abstract

The transition to clean energy necessitates the development of alternative or complementary battery chemistries to lithium-ion batteries. Aluminium (Al) metal batteries (AMBs) are a promising option owing to their high energy density and advantages in terms of abundance, recyclability, manufacturability and sustainability. However, state-of-the-art AMBs rely primarily on electrolytes featuring chloroaluminate anions such as Al2Cl7. Unfortunately, such electrolytes create a disparity between achievable energy density and potential, in addition to having high corrosivity, high cost, high viscosity and poor transport kinetics. Here we break this paradigm by formulating an organochloro electrolyte with AlCl3 salt in dipropyl ether (DPE) solvent. Notably, this AlCl3/DPE electrolyte shows no corrosion behaviour towards stainless steel current collectors during 90-day soaking. It enables stable cycling of the Al anode for over 2,000 h at 0.2 mA cm−2 and a high Coulombic efficiency of 99.85%, and prototype Al//Mo6S8 full cells survive 300 cycles. Underlying these unprecedented performances is the unique organochloro solvation structure, AlCl2(DPE)2+, which is desolvatable and immobilizes free Cl. By extending the horizon of electrolyte design into the organic domain, this work addresses the notorious issues facing AMBs and paves the way for the implementation of multivalent rechargeable batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and properties of organic electrolytes.
Fig. 2: The de-solvation kinetics of Al-cation species.
Fig. 3: Al plating and stripping in different electrolytes.
Fig. 4: Corrosivity evaluation of the AlCl3/DPE electrolyte.
Fig. 5: Performance of Al//Mo6S8 full cells.

Similar content being viewed by others

Data availability

All data are available in the Article and Supplementary Information. Source data are provided with this paper.

References

  1. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  2. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  CAS  Google Scholar 

  3. Tu, J. et al. Nonaqueous rechargeable aluminum batteries: progresses, challenges, and perspectives. Chem. Rev. 121, 4903–4961 (2021).

    Article  CAS  Google Scholar 

  4. Ng, K. L., Amrithraj, B. & Azimi, G. Nonaqueous rechargeable aluminum batteries. Joule 6, 134–170 (2022).

    Article  CAS  Google Scholar 

  5. Liu, W. et al. Pursuing high voltage and long lifespan for low-cost Al-based rechargeable batteries: dual-ion design and prospects. Energy Storage Mater. 62, 102922 (2023).

    Article  Google Scholar 

  6. Long, Y. et al. Suppressing Al dendrite growth towards a long-life Al-metal battery. Energy Storage Mater. 34, 194–202 (2021).

    Article  Google Scholar 

  7. Jiang, M. et al. Challenges and strategies of low-cost aluminum anodes for high-performance Al-based batteries. Adv. Mater. 34, e2102026 (2022).

    Article  Google Scholar 

  8. Yang, H. et al. The rechargeable aluminum battery: opportunities and challenges. Angew. Chem. Int. Ed. 58, 11978–11996 (2019).

    Article  CAS  Google Scholar 

  9. Meng, Y. S., Srinivasan, V. & Xu, K. Designing better electrolytes. Science 378, eabq3750 (2022).

    Article  CAS  Google Scholar 

  10. Liang, Y., Dong, H., Aurbach, D. & Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020).

    Article  CAS  Google Scholar 

  11. Del Duca, B. S. Electrochemical behavior of the aluminum electrode in molten salt electrolytes. J. Electrochem. Soc. 118, 405 (1971).

    Article  Google Scholar 

  12. Holleck, G. L. & Giner, J. The aluminum electrode in AlCl3–alkali–halide melts. J. Electrochem. Soc. 119, 1161 (1972).

    Article  CAS  Google Scholar 

  13. Pastel, G. R. et al. A sobering examination of the feasibility of aqueous aluminum batteries. Energy Environ. Sci. 15, 2460–2469 (2022).

    Article  CAS  Google Scholar 

  14. Zhang, Y., Bian, Y., Lv, Z., Han, Y. & Lin, M.-C. Aqueous aluminum cells: mechanisms of aluminum anode reactions and role of the artificial solid electrolyte interphase. ACS Appl. Mater. Interfaces 13, 37091–37101 (2021).

    Article  CAS  Google Scholar 

  15. Jayaprakash, N., Das, S. K. & Archer, L. A. The rechargeable aluminum-ion battery. Chem. Commun. 47, 12610–12612 (2011).

    Article  CAS  Google Scholar 

  16. Lin, M.-C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015).

    Article  CAS  Google Scholar 

  17. Sun, H. et al. A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun. 51, 11892–11895 (2015).

    Article  CAS  Google Scholar 

  18. Elia, G. A. et al. An overview and prospective on Al and Al-ion battery technologies. J. Power Sources 481, 228870 (2021).

    Article  CAS  Google Scholar 

  19. Faegh, E., Ng, B., Hayman, D. & Mustain, W. E. Practical assessment of the performance of aluminium battery technologies. Nat. Energy 6, 21–29 (2021).

    Article  CAS  Google Scholar 

  20. Angell, M. et al. High coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte. Proc. Natl Acad. Sci. USA 114, 834–839 (2017).

    Article  CAS  Google Scholar 

  21. Chu, W. et al. A low-cost deep eutectic solvent electrolyte for rechargeable aluminum–sulfur battery. Energy Storage Mater. 22, 418–423 (2019).

    Article  Google Scholar 

  22. Abood, H. M. A., Abbott, A. P., Ballantyne, A. D. & Ryder, K. S. Do all ionic liquids need organic cations? Characterisation of [AlCl2·nAmide]+AlCl4 and comparison with imidazolium based systems. Chem. Commun. 47, 3523–3525 (2011).

    Article  CAS  Google Scholar 

  23. Winter, M., Barnett, B. & Xu, K. Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).

    Article  CAS  Google Scholar 

  24. Gálová, M. Electrodeposition of aluminium from organic aprotic solvents. Surf. Technol. 11, 357–369 (1980).

    Article  Google Scholar 

  25. Legrand, L., Tranchant, A. & Messina, R. Aluminium behaviour and stability in AlCl3DMSO2 electrolyte. Electrochim. Acta 41, 2715–2720 (1996).

    Article  CAS  Google Scholar 

  26. Jiang, T., Chollier Brym, M. J., Dubé, G., Lasia, A. & Brisard, G. M. Studies on the AlCl3/dimethylsulfone (DMSO2) electrolytes for the aluminum deposition processes. Surf. Coat. Technol. 201, 6309–6317 (2007).

    Article  CAS  Google Scholar 

  27. Kitada, A., Nakamura, K., Fukami, K. & Murase, K. Electrochemically active species in aluminum electrodeposition baths of AlCl3/glyme solutions. Electrochim. Acta 211, 561–567 (2016).

    Article  CAS  Google Scholar 

  28. Chiku, M., Matsumura, S., Takeda, H., Higuchi, E. & Inoue, H. Aluminum bis(trifluoromethanesulfonyl)imide as a chloride-free electrolyte for rechargeable aluminum batteries. J. Electrochem. Soc. 164, A1841–A1844 (2017).

    Article  CAS  Google Scholar 

  29. Kumar, S. et al. Additive-driven interfacial engineering of aluminum metal anode for ultralong cycling life. Nanomicro Lett. 15, 21 (2022).

    Google Scholar 

  30. Yoo, H. D. et al. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nat. Commun. 8, 339 (2017).

    Article  Google Scholar 

  31. Xu, Z.-L. et al. A new high-voltage calcium intercalation host for ultra-stable and high-power calcium rechargeable batteries. Nat. Commun. 12, 3369 (2021).

    Article  CAS  Google Scholar 

  32. Chen, K. et al. Correlating the solvating power of solvents with the strength of ion-dipole interaction in electrolytes of lithium-ion batteries. Angew. Chem. Int. Ed. 62, e202312373 (2023).

    Article  CAS  Google Scholar 

  33. Wu, Y. et al. Electrostatic potential as solvent descriptor to enable rational electrolyte design for lithium batteries. Adv. Energy Mater. 13, 2300259 (2023).

    Article  CAS  Google Scholar 

  34. Yang, H. et al. An aluminum–sulfur battery with a fast kinetic response. Angew. Chem. Int. Ed. 57, 1898–1902 (2018).

    Article  CAS  Google Scholar 

  35. Pang, Q. et al. Fast-charging aluminium–chalcogen batteries resistant to dendritic shorting. Nature 608, 704–711 (2022).

    Article  CAS  Google Scholar 

  36. Akdeniz, Z., Pastore, G. & Tosi, M. P. An ionic model for molecular units in molten aluminium trichloride and alkali chloroaluminates. Phys. Chem. Liq. 32, 191–209 (1996).

    Article  CAS  Google Scholar 

  37. Haouas, M., Taulelle, F. & Martineau, C. Recent advances in application of 27Al NMR spectroscopy to materials science. Prog. Nucl. Magn. Reson. Spectrosc. 94–95, 11–36 (2016).

    Article  Google Scholar 

  38. von Cresce, A. & Xu, K. Preferential solvation of Li+ directs formation of interphase on graphitic anode. Electrochem. Solid-State Lett. 14, A154 (2011).

    Article  Google Scholar 

  39. Abdul-Sada, A.aK., Greenway, A. M., Seddon, K. R. & Welton, T. A fast atom bombardment mass spectrometric study of room-temperature 1-ethyl-3-methylimidazolium chloroaluminate(III) ionic liquids. Evidence for the existence of the decachlorotrialuminate(III) anion. Org. Mass Spectrom. 28, 759–765 (1993).

    Article  CAS  Google Scholar 

  40. Zhang, Y. et al. d–p hybridization-induced “trapping–coupling–conversion” enables high-efficiency Nb single-atom catalysis for Li–S batteries. J. Am. Chem. Soc. 145, 1728–1739 (2023).

    Article  CAS  Google Scholar 

  41. Wang, L. et al. Design rules of a sulfur redox electrocatalyst for lithium–sulfur batteries. Adv. Mater. 34, e2110279 (2022).

    Article  Google Scholar 

  42. Barthel, E. R., Martini, I. B. & Schwartz, B. J. How does the solvent control electron transfer? Experimental and theoretical studies of the simplest charge transfer reaction. J. Phys. Chem. B 105, 12230–12241 (2001).

    Article  CAS  Google Scholar 

  43. Hou, S. et al. Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. Science 374, 172–178 (2021).

    Article  CAS  Google Scholar 

  44. Wang, H. et al. High-voltage and noncorrosive ionic liquid electrolyte used in rechargeable aluminum battery. ACS Appl. Mater. Interfaces 8, 27444–27448 (2016).

    Article  CAS  Google Scholar 

  45. Tseng, C.-H. et al. Corrosion behaviors of materials in aluminum chloride–1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochem. Commun. 12, 1091–1094 (2010).

    Article  CAS  Google Scholar 

  46. Geng, L., Lv, G., Xing, X. & Guo, J. Reversible electrochemical intercalation of aluminum in Mo6S8. Chem. Mater. 27, 4926–4929 (2015).

    Article  CAS  Google Scholar 

  47. Levi, E. & Aurbach, D. Chevrel phases, MxMo6T8 (M = metals, T = S, Se, Te) as a structural chameleon: changes in the rhombohedral framework and triclinic distortion. Chem. Mater. 22, 3678–3692 (2010).

    Article  CAS  Google Scholar 

  48. Jadhav, A. L., Xu, J. H. & Messinger, R. J. Quantitative molecular-level understanding of electrochemical aluminum-ion intercalation into a crystalline battery electrode. ACS Energy Lett. 5, 2842–2848 (2020).

    Article  CAS  Google Scholar 

  49. Lin, Z. et al. Electroactive-catalytic conductive framework for aluminum–sulfur batteries. Energy Storage Mater. 51, 266–272 (2022).

    Article  Google Scholar 

  50. Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).

    Article  CAS  Google Scholar 

  51. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000).

    Article  CAS  Google Scholar 

  52. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  53. Frisch, M. J. et al. Gaussian 09, Revision A.01 (Gaussian, Inc., 2016).

  54. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  55. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  56. Dronskowski, R. & Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. A 97, 8617–8624 (1993).

    Article  CAS  Google Scholar 

  57. Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030–1035 (2016).

    Article  CAS  Google Scholar 

  58. Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011).

    Article  CAS  Google Scholar 

  59. Vandevondele, J. & Hutter, J. An efficient orbital transformation method for electronic structure calculations. J. Chem. Phys. 118, 4365–4369 (2003).

    Article  CAS  Google Scholar 

  60. Vandevondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article  Google Scholar 

  61. Laun, J. & Bredow, T. BSSE-corrected consistent Gaussian basis sets of triple-zetavalence with polarization quality of the fifth period for solid-state calculations. J. Comput. Chem. 43, 839–846 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the technical support from the Advanced Instrumental Analysis Center, School of Chemical Engineering and Technology, Tianjin University, for their provision of high-performance characterization services. We thank BRUKER OPTICS for granting access to the Raman characterization instruments. We acknowledge the financial support from the National Natural Science Foundation of China (numbers 22479110, 22109116 and 22121004), the National Key Research and Development Program of China (number 2022YFB2404500), the Energy Revolution S&T Program of Yulin Innovation Institute of Clean Energy (number E411050316), the ‘Pandeng Plan’ Project in Tianjin University (number 2024XPD-0002), the Natural Science Foundation of Tianjin (number 23JCQNJC01750), the National Industry-Education Platform for Energy Storage (Tianjin University), the Fundamental Research Funds for the Central Universities and the Haihe Laboratory of Sustainable Chemical Transformations.

Author information

Authors and Affiliations

Authors

Contributions

Q.-H.Y. and Z.W. supervised the project. Z.W. and D.H. conceived and designed the experiments. B.Z., D.H. and Z.W. performed electrochemical, NMR, Raman, ESI–MS and SEM characterizations, and results analysis. Z.L., L.W. and Z.M. carried out molecular dynamics simulations and DFT calculations. Q.L. contributed to the synthesis of cathode materials. X.M. conducted the XRD measurement. B.Z. and D.H. wrote the first draft of the paper. D.H., Z.W. and Q.-H.Y. reviewed and edited the final version of the article with assistance from C.C. and Z.L. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Daliang Han, Zhe Weng or Quan-Hong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Jan Bitenc, Shuqiang Jiao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–35, Tables 1–4, Notes 1–5 and references.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Li, Z., Han, D. et al. Non-corrosive organodichloro electrolyte for reversible aluminium metal batteries. Nat Sustain (2025). https://doi.org/10.1038/s41893-025-01706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41893-025-01706-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing