Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Consumption inequalities in material use undermining resources sustainability

Abstract

Growing global material consumption has pushed the Earth beyond safe planetary boundaries, yet little is known about how this burden is distributed across individuals. This study quantifies the inequality in household material footprints (MFs) using detailed global expenditure data from 168 countries, linked with a multiregional input–output approach. Results reveal stark inequalities: the top 10% consumers contribute 36% of global total household MFs, while the bottom 50% of consumers account for merely 18%. Inequality is especially pronounced in non-renewable resources such as metals and fossil fuels. Furthermore, elasticity analysis reveals a recoupling of resource use with high consumption, challenging the notion of absolute decoupling. These findings suggest that current sustainability policies about resource focusing on national efficiency gains may fall short without addressing the material-intensive lifestyles of the affluent. Targeting overconsumption at the top could reduce ecological overshoot and create space for sustainable development and material sufficiency for the global majority.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MFs by global expenditure decile in 2017.
Fig. 2: Sectoral composition of the MFs across global consumer deciles.
Fig. 3: MF inequality in 2017, measured by Lorenz curves and Gini coefficients.
Fig. 4: Per capita MFs of household consumption by country and expenditure decile.
Fig. 5: Contribution of global expenditure deciles to material overshoot.
Fig. 6: The MF elasticity of consumption for four material types.

Similar content being viewed by others

Data availability

The GLORIA database, including the MRIO table and materials satellite accounts, is openly accessible at https://ielab.info/. Expenditure data are collected from the World Bank (https://data.worldbank.org/) and other sources. See ref. 17 or contact the corresponding authors for more details.

Code availability

No new code is developed in this study.

References

  1. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  Google Scholar 

  2. Rockström, J. et al. Safe and just Earth system boundaries. Nature 619, 102–111 (2023).

  3. van Vuuren, D. P. et al. Exploring pathways for world development within planetary boundaries. Nature 641, 910–916 (2025).

  4. Haberl, H. et al. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: synthesizing the insights. Environ. Res. Lett. 15, 65003 (2020).

    Article  Google Scholar 

  5. Steinmann, Z. J. N. et al. Resource footprints are good proxies of environmental damage. Environ. Sci. Technol. 51, 6360–6366 (2017).

    Article  CAS  Google Scholar 

  6. Krausmann, F. et al. Growth in global materials use, GDP and population during the 20th century. Ecol. Econ. 68, 2696–2705 (2009).

    Article  Google Scholar 

  7. Oberle, B. et al. Global Resources Outlook: 2019 (United Nations, 2019).

  8. Lenzen, M. et al. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustain. 5, 157–166 (2022).

    Article  Google Scholar 

  9. Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).

    Article  CAS  Google Scholar 

  10. Schandl, H. et al. Global material flows and resource productivity: the 2024 update. J. Ind. Ecol. 28, 2012–2031 (2024).

    Article  Google Scholar 

  11. Wiedmann, T., Lenzen, M., Keyßer, L. T. & Steinberger, J. K. Scientists’ warning on affluence. Nat. Commun. 11, 3107 (2020).

    Article  CAS  Google Scholar 

  12. Bruyninckx, H. et al. Global Resources Outlook 2024: Bend the Trend—Pathways to a Liveable Planet as Resource Use Spikes (UNEP, 2024).

  13. Giljum, S., Bruckner, M. & Martinez, A. Material footprint assessment in a global input-output framework. J. Ind. Ecol. 19, 792–804 (2015).

    Article  Google Scholar 

  14. Schandl, H. et al. Global material flows and resource productivity: forty years of evidence. J. Ind. Ecol. 22, 827–838 (2018).

    Article  Google Scholar 

  15. Hickel, J., O’Neill, D. W., Fanning, A. L. & Zoomkawala, H. National responsibility for ecological breakdown: a fair-shares assessment of resource use, 1970–2017. Lancet Planet. Heal. 6, e342–e349 (2022).

    Article  Google Scholar 

  16. Chancel, L. Global carbon inequality over 1990–2019. Nat. Sustain. 5, 931–938 (2022).

    Article  Google Scholar 

  17. Tian, P. et al. Keeping the global consumption within the planetary boundaries. Nature 635, 625–639 (2024).

    Article  CAS  Google Scholar 

  18. Fanning, A. L., O’Neill, D. W., Hickel, J. & Roux, N. The social shortfall and ecological overshoot of nations. Nat. Sustain. 5, 26–36 (2022).

    Article  Google Scholar 

  19. Savelli, E., Mazzoleni, M., Di Baldassarre, G., Cloke, H. & Rusca, M. Urban water crises driven by elites’ unsustainable consumption. Nat. Sustain. 6, 929–940 (2023).

  20. Bruckner, B., Hubacek, K., Shan, Y., Zhong, H. & Feng, K. Impacts of poverty alleviation on national and global carbon emissions. Nat. Sustain. 5, 311–320 (2022).

  21. Oswald, Y., Owen, A. & Steinberger, J. K. Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nat. Energy 5, 231–239 (2020).

    Article  Google Scholar 

  22. Millward-Hopkins, J. Inequality can double the energy required to secure universal decent living. Nat. Commun. 13, 5028 (2022).

    Article  CAS  Google Scholar 

  23. Wiedenhofer, D. et al. Unequal household carbon footprints in China. Nat. Clim. Change 7, 75–80 (2017).

    Article  CAS  Google Scholar 

  24. Scherer, L. et al. Trade-offs between social and environmental Sustainable Development Goals. Environ. Sci. Policy 90, 65–72 (2018).

    Article  Google Scholar 

  25. Pothen, F. & Reaños, M. A. T. The distribution of material footprints in Germany. Ecol. Econ. 153, 237–251 (2018).

    Article  Google Scholar 

  26. Buhl, J., Liedtke, C., Teubler, J. & Bienge, K. The Material Footprint of private households in Germany: linking the natural resource use and socioeconomic characteristics of users from an online footprint calculator in Germany. Sustain. Prod. Consum. 20, 74–83 (2019).

    Article  Google Scholar 

  27. Vélez-Henao, J. A. & Pauliuk, S. Material requirements of decent living standards. Environ. Sci. Technol. 57, 14206–14217 (2023).

    Article  Google Scholar 

  28. Rammelt, C. F. et al. Impacts of meeting minimum access on critical Earth systems amidst the Great Inequality. Nat. Sustain. 6, 212–221 (2023).

    Article  Google Scholar 

  29. Chancel, L., Piketty, T., Saez, E. & Zucman, G. World Inequality Report 2022 (Harvard Univ. Press, 2022).

  30. Blanchet, T., Chancel, L. & Gethin, A. Why is Europe more equal than the United States? Am. Econ. J. Appl. Econ. 14, 480–518 (2022).

    Article  Google Scholar 

  31. Tukker, A. et al. Environmental and resource footprints in a global context: Europe’s structural deficit in resource endowments. Glob. Environ. Change 40, 171–181 (2016).

    Article  Google Scholar 

  32. Pauliuk, S. et al. Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. Nat. Commun. 12, 5097 (2021).

    Article  CAS  Google Scholar 

  33. Hertwich, E. G. et al. Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. Environ. Res. Lett. 14, 43004 (2019).

    Article  CAS  Google Scholar 

  34. Tian, P., Ma, H., Zhang, Z., Yu, Y. & Li, D. China’s current carbon inequality is predominantly determined by capital disparity. Ecol. Econ. 230, 108515 (2025).

    Article  Google Scholar 

  35. Jackson, T. & Victor, P. A. Unraveling the claims for (and against) green growth. Science 366, 950–951 (2019).

    Article  CAS  Google Scholar 

  36. Hickel, J. & Kallis, G. Is green growth possible? New Polit. Econ. 25, 469–486 (2020).

    Article  Google Scholar 

  37. Oswald, Y., Millward-Hopkins, J., Steinberger, J. K., Owen, A. & Ivanova, D. Luxury-focused carbon taxation improves fairness of climate policy. One Earth 6, 884–898 (2023).

    Article  Google Scholar 

  38. Bengtsson, M., Alfredsson, E., Cohen, M., Lorek, S. & Schroeder, P. Transforming systems of consumption and production for achieving the sustainable development goals: moving beyond efficiency. Sustain. Sci. 13, 1533–1547 (2018).

    Article  Google Scholar 

  39. Wirsenius, S. Efficiencies and biomass appropriation of food commodities on global and regional levels. Agric. Syst. 77, 219–255 (2003).

    Article  Google Scholar 

  40. Sun, Z. et al. Dietary change in high-income nations alone can lead to substantial double climate dividend. Nat. Food 3, 29–37 (2022).

    Article  CAS  Google Scholar 

  41. Miller, R. E. & Blair, P. D. Input-Output Analysis: Foundations and Extensions (Cambridge Univ. Press, 2009).

  42. Tian, P. et al. Implementation of carbon pricing in an aging world calls for targeted protection schemes. Proc. Natl Acad. Sci. USA 2, pgad209 (2023).

    Google Scholar 

  43. O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).

    Article  Google Scholar 

  44. Mi, Z. et al. Economic development and converging household carbon footprints in China. Nat. Sustain. 3, 529–537 (2020).

    Article  Google Scholar 

  45. Managing and Conserving the Natural Resource Base for Sustained Economic and Social Development (UNEP, 2014).

  46. Dittrich, M. Green Economies Around the World?: Implications of Resource Use for Development and the Environment (SERI, 2012).

  47. Bringezu, S. Possible target corridor for sustainable use of global material resources. Resources 4, 25–54 (2015).

    Article  Google Scholar 

  48. Lucas, P. L., Wilting, H. C., Hof, A. F. & van Vuuren, D. P. Allocating planetary boundaries to large economies: distributional consequences of alternative perspectives on distributive fairness. Glob. Environ. Change 60, 102017 (2020).

    Article  Google Scholar 

  49. Hubacek, K. et al. Global carbon inequality. Energy Ecol. Environ. 2, 361–369 (2017).

    Article  Google Scholar 

  50. Zheng, X., Wang, R., Wood, R., Wang, C. & Hertwich, E. G. High sensitivity of metal footprint to national GDP in part explained by capital formation. Nat. Geosci. 11, 269–273 (2018).

    Article  CAS  Google Scholar 

  51. Lenzen, M. et al. The Global MRIO Lab–charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).

    Article  Google Scholar 

  52. Malik, A. et al. Polarizing and equalizing trends in international trade and Sustainable Development Goals. Nat. Sustain. 7, 1359–1370 (2024).

    Article  Google Scholar 

  53. Technical Annex for Global Material Flows Database (UN IRP, 2018); http://www.csiro.au/-/media/LWF/Files/CES-Material-Flows_db/Technical-annex-for-Global-Material-Flows-Database.pdf

  54. Tian, P. et al. Higher total energy costs strain the elderly, especially low-income, across 31 developed countries. Proc. Natl Acad. Sci. USA 121, e2306771121 (2024).

    Article  CAS  Google Scholar 

  55. Wiedmann, T. A review of recent multi-region input–output models used for consumption-based emission and resource accounting. Ecol. Econ. 69, 211–222 (2009).

    Article  Google Scholar 

  56. Lenzen, M. Aggregation versus disaggregation in input–output analysis of the environment. Econ. Syst. Res. 23, 73–89 (2011).

    Article  Google Scholar 

  57. Rodrigues, J. F. D., Moran, D., Wood, R. & Behrens, P. Uncertainty of consumption-based carbon accounts. Environ. Sci. Technol. 52, 7577–7586 (2018).

    Article  CAS  Google Scholar 

  58. André, M., Bourgeois, A., Combet, E., Lequien, M. & Pottier, A. Challenges in measuring the distribution of carbon footprints: the role of product and price heterogeneity. Ecol. Econ. 220, 108122 (2024).

    Article  Google Scholar 

  59. Ivanova, D. & Wood, R. The unequal distribution of household carbon footprints in Europe and its link to sustainability. Glob. Sustain. 3, e18 (2020).

    Article  Google Scholar 

  60. Starr, J., Nicolson, C., Ash, M., Markowitz, E. M. & Moran, D. Assessing US consumers’ carbon footprints reveals outsized impact of the top 1%. Ecol. Econ. 205, 107698 (2023).

    Article  Google Scholar 

  61. Hertwich, E. G. Increased carbon footprint of materials production driven by rise in investments. Nat. Geosci. 14, 151–155 (2021).

    Article  CAS  Google Scholar 

  62. Sodersten, C.-J. H., Wood, R. & Hertwich, E. G. Endogenizing capital in MRIO models: the implications for consumption-based accounting. Environ. Sci. Technol. 52, 13250–13259 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 72522023, 72403147, 72534005 and 72303136), the Taishan Scholar Youth Expert Program of Shandong Province (grant no. tsqn202507015), the major grant in National Social Sciences of China (23VRC037, 24VHQ018) and the Young Talent of Lifting Engineering for Science and Technology in Shandong, China (grant no. SDAST2025QTA029).

Author information

Authors and Affiliations

Authors

Contributions

P.T., K.F., D.L. and L.S. designed the study. P.T. and D.L. performed the analysis and prepared the paper. K.F., D.L. and L.S. coordinated and supervised the project. P.T., K.F., X.C., D.L., M.J., J.L., H.Z., Y.S. and L.S. participated in writing the paper.

Corresponding authors

Correspondence to Kuishuang Feng, Dan Li or Laixiang Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Guilherme Magacho, Keisuke Nansai, Iban Ortuzar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Table 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, P., Feng, K., Chen, X. et al. Consumption inequalities in material use undermining resources sustainability. Nat Sustain (2026). https://doi.org/10.1038/s41893-025-01726-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41893-025-01726-2

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene