Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Characterization of through-silicon vias using laser terahertz emission microscopy

Abstract

Three-dimensional (3D) complementary metal–oxide–semiconductor (CMOS) integration could enable device scaling beyond the limits of conventional 2D CMOS technology. Such integration requires vertical electrical connections that pass through silicon substrates and interconnect stacked chips. The fabrication of these through-silicon vias (TSVs) creates new challenges in metrology, including the characterization of the thin isolation film deposited on the sidewalls of the TSVs and thickness characterization for wafer thinning. Here, we show that laser-induced terahertz emission microscopy can be used to characterize TSVs. Terahertz emission is observed through the excitation of a transient electric dipole in the depletion field of the TSV using femtosecond laser pulses. The detected terahertz waveform provides information about the local depletion field and thus structural information about the isolation film. By performing a time-of-flight measurement of the terahertz pulse, we can also extract the silicon wafer thickness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Laser-induced terahertz emission from TSVs.
Fig. 2: Terahertz measurement set-up.
Fig. 3: Time-domain waveforms and Fourier spectra of laser-excited terahertz emission from TSVs.
Fig. 4: Terahertz radiation from TSVs through a laser-induced transient electric dipole process.
Fig. 5: Effect of excitation angle on the laser-excited terahertz emission from TSVs.
Fig. 6: Electric field polarization of the radiated terahertz field.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Beyne, E. The rise of the 3rd dimension for system integration. In Proc. 2006 IEEE International Interconnect Technology Conference 1–5 https://doi.org/10.1109/IITC.2006.1648629 (IEEE, 2006).

  2. Beyne, E. The 3-D interconnect technology landscape. IEEE Des. Test 33, 8–20 (2016).

    Article  Google Scholar 

  3. Garrou, P., Bower, C. & Ramm, P. Handbook of 3D Integration: Technology and Applications of 3D Integrated Circuits (Wiley, 2008).

  4. Gambino, J. P., Adderly, S. A. & Knickerbocker, J. U. An overview of through-silicon-via technology and manufacturing challenges. Microelectron. Eng. 135, 73–106 (2015).

    Article  Google Scholar 

  5. Van der Plas, G. et al. Design issues and considerations for low-cost 3D TSV IC technology. In Proc. IEEE International Solid-State Circuits Conference (ISSCC) 148–149 (IEEE, 2010).

  6. Croes, K. et al. Reliability challenges related to TSV integration and 3-D stacking. IEEE Des. Test 33, 37–45 (2016).

    Article  Google Scholar 

  7. Li, Y. et al. Reliability challenges for barrier/liner system in high aspect ratio through silicon vias. Microelectron. Reliab. 54, 1949–1952 (2014).

    Article  Google Scholar 

  8. Vartanian, V. H. et al. Metrology needs for through-silicon via fabrication. J. Micro/Nanolithogr. MEMS MOEMS 13, 011206 (2014).

    Google Scholar 

  9. Bender, H. et al. Structural characterization of through silicon vias. J. Mater. Sci. 47, 6497–6504 (2012).

    Article  Google Scholar 

  10. Tonouchi, M. Simplified formulas for the generation of terahertz waves from semiconductor surfaces excited with a femtosecond laser. J. Appl. Phys. 127, 245703 (2020).

    Article  Google Scholar 

  11. Teh, W. H., Marx, D., Grant, D. & Dudley, R. Backside infrared interferometric patterned wafer thickness sensing for through silicon-via (TSV) etch metrology. IEEE Trans. Semicond. Manuf. 23, 419–422 (2010).

    Article  Google Scholar 

  12. Park, J., Jin, J., Kim, J. W. & Kim, J. A. Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser. Opt. Commun. 305, 170–174 (2013).

    Article  Google Scholar 

  13. Ahn, H., Bae, J., Park, J. & Jin, J. A hybrid non-destructive measuring method of three-dimensional profile of through silicon vias for realization of smart devices. Sci. Rep. 8, 15342 (2018).

    Article  Google Scholar 

  14. Katti, G. et al. Technology assessment of through-silicon via by using C–V and C–t measurements. IEEE Electron Device Lett. 32, 946–948 (2011).

    Article  Google Scholar 

  15. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2007).

  16. Nicollian, E. H. & Brews, J. R. MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, 2002).

  17. Shen, Y. Surface properties probed by second-harmonic and sum-frequency generation. Nature 337, 519–525 (1989).

    Article  Google Scholar 

  18. Murakami, H. & Tonouchi, M. Laser terahertz emission microscopy. C. R. Phys. 9, 169–183 (2008).

    Article  Google Scholar 

  19. Murakami, H. et al. Scanning laser THz imaging system. J. Phys. D 47, 374007 (2014).

    Article  Google Scholar 

  20. Hoyer, P., Theuer, M., Beigang, R. & Kley, E. B. Terahertz emission from black silicon. Appl. Phys. Lett. 93, 091106 (2008).

    Article  Google Scholar 

  21. Philipp, H. R. & Taft, E. A. Optical constants of silicon in the region 1 to 10 ev. Phys. Rev. 120, 37–38 (1960).

    Article  Google Scholar 

  22. Van Exter, M. & Grischkowsky, D. Optical and electronic properties of doped silicon from 0.1 to 2 THz. Appl. Phys. Lett. 56, 1694 (1990).

    Article  Google Scholar 

  23. Maxwell, J. C. A dynamical theory of the electromagnetic field. Phil. Trans. R. Soc. Lond. 155, 459–512 (1865).

    Google Scholar 

  24. Dember, H. Über eine photoelektronische Kraft in Kupferoxydul-Kristallen. Z. Phys. 32, 554 (1931).

    Google Scholar 

  25. Zhang, X. & Auston, D. H. Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics. J. Appl. Phys. 71, 326 (1992).

    Article  Google Scholar 

  26. Auston, D. H. Subpicosecond electro optic shock waves. Appl. Phys. Lett. 43, 713 (1983).

    Article  Google Scholar 

  27. Gu, P., Tani, M., Kono, S., Sakai, K. & Zhang, X.-C. Study of terahertz radiation from InAs and InSb. J. Appl. Phys. 91, 5533 (2002).

    Article  Google Scholar 

  28. Shibuya, T. et al. Terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal under intra-cavity conditions. Appl. Phys. Exp. 1, 042002 (2008).

    Article  Google Scholar 

  29. Mochizuki, T. et al. Probing the surface potential of oxidized silicon by assessing terahertz emission. Appl. Phys. Lett. 110, 163502 (2017).

    Article  Google Scholar 

  30. Heyman, J. N., Coates, N., Reinhardt, A. & Strasser, G. Diffusion and drift in terahertz emission at GaAs surfaces. Appl. Phys. Lett. 83, 5476 (2003).

    Article  Google Scholar 

  31. Wang, K. & Mittleman, D. M. Guided propagation of terahertz pulses on metal wires. J. Opt. Soc. Am. B 22, 2001–2008 (2005).

    Article  Google Scholar 

  32. Jeona, T., Zhang, J. & Grischkowsky, D. THz Sommerfeld wave propagation on a single metal wire. Appl. Phys. Lett. 86, 161904 (2005).

    Article  Google Scholar 

  33. Park, S., Hamh, S., Park, J., Kim, J. & Lee, J. Possible flat band bending of the Bi1.5Sb0.5Te1.7Se1.3 crystal cleaved in an ambient air probed by terahertz emission spectroscopy. Sci. Rep. 6, 36343 (2016).

    Article  Google Scholar 

  34. Johnston, M. B., Whittaker, D. M., Corchia, A., Davies, A. G. & Linfield, E. H. Simulation of terahertz generation at semiconductor surfaces. Phys. Rev. B 65, 165301 (2002).

    Article  Google Scholar 

  35. Matsudaira, A., Mehrotra, S. R., Ahmed, S. S., Klimeck, G. & Vasileska, D. MOSCap (2014); https://nanohub.org/resources/moscaphttps://doi.org/10.4231/D3736M30D

  36. Burford, N. M. & El-Shenawee, M. O. Review of terahertz photoconductive antenna technology. Opt. Eng. 56, 010901 (2017).

    Article  Google Scholar 

  37. Murakami, H., Takarada, T. & Tonouchi, M. Low-temperature GaAs-based plasmonic photoconductive terahertz detector with Au nano-islands. Photonics Res. 8, 1448–1456 (2020).

    Article  Google Scholar 

  38. Murakami, H., Mizui, K. & Tonouchi, M. High-sensitivity photoconductive detectors with wide dipole electrodes for low frequency THz wave detection. J. Appl. Phys. 125, 151610 (2019).

    Article  Google Scholar 

  39. Beyne, E. Reliable via-middle copper through-silicon via technology for 3-D integration. IEEE Trans. Compon. Packag. Manuf. Technol. 6, 983–992 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from imec’s 3D integration team and industrially affiliated partners and thank I. Kawayama for fruitful discussions. K.J.P.J. is grateful to O. Wada for his encouragement and support of this work. This work was partially supported by a scientific research grant (PE18026) from the Japan Society for the Promotion of Science (JSPS), as well as the JSPS Core-to-Core Program and the FWO.

Author information

Authors and Affiliations

Authors

Contributions

This work was conceived jointly by K.J.P.J. and M.T. K.J.P.J. and F.M. conducted the experimental work. The experimental apparatus was designed by H.M. and constructed by K.S. and F.M. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Kristof J. P. Jacobs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Richard Allen, Kubilay Sertel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobs, K.J.P., Murakami, H., Murakami, F. et al. Characterization of through-silicon vias using laser terahertz emission microscopy. Nat Electron 4, 202–207 (2021). https://doi.org/10.1038/s41928-021-00559-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41928-021-00559-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing