Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continuous biochemical profiling of the gastrointestinal tract using an integrated smart capsule

Abstract

The gastrointestinal tract contains a wealth of chemical information that can be used to decipher the health of the digestive and nervous systems. Traditional methods of analysis, such as faecal analysis and biopsies, are invasive, costly and incapable of providing real-time metabolic and hormone profiling across the gastrointestinal tract. Commercial ingestible capsule sensors have been developed, but only monitor basic markers, such as pH and pressure, neglecting detailed chemical analysis. Here we report an integrated smart capsule that can simultaneously detect a spectrum of biochemical markers, including electrolytes, metabolites and hormones. The capsule, which is termed PillTrek, is 7 mm in diameter and 25 mm in length, and houses a miniaturized wireless electrochemical workstation capable of executing a range of electrochemical measurement techniques (potentiometry, amperometry, voltammetry and impedimetry), allowing it to interface with a variety of electrochemical sensors and detect various parameters in the gut. Using an array of sensors (serotonin, glucose, pH, ionic strength and temperature), we illustrate the capabilities of the system in vitro and in vivo in animal studies involving rat and rabbit models, monitoring the dynamic profile of these crucial biomarkers and their responsiveness to different dietary intakes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PillTrek, a capsule electrochemical platform for continuous, multiplexed GI fluid analysis.
Fig. 2: Electrochemical sensor array of PillTrek for multiplexed detection of GI biomarkers.
Fig. 3: The system integration of PillTrek for prolonged wireless operation in the GI tract.
Fig. 4: In vitro evaluation of PillTrek for assessing the dietary influences on GI biomarker levels in rats.
Fig. 5: In vivo validation of PillTrek for real-time multimodal monitoring of GI biomarkers in rabbits.

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Steiger, C. et al. Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4, 83–98 (2019).

    Article  Google Scholar 

  2. Said, H. M. & Ghishan, F. K. (eds) Physiology of the Gastrointestinal Tract (Academic Press, 2018).

  3. Dieterich, W., Schink, M. & Zopf, Y. Microbiota in the gastrointestinal tract. Med. Sci. 6, 116 (2018).

    Google Scholar 

  4. McCallum, G. & Tropini, C. The gut microbiota and its biogeography. Nat. Rev. Microbiol. 22, 105–118 (2024).

    Article  Google Scholar 

  5. Smith, P. A. The tantalizing links between gut microbes and the brain. Nature 526, 312–314 (2015).

    Article  Google Scholar 

  6. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    Article  Google Scholar 

  7. Rea, K., Dinan, T. G. & Cryan, J. F. The microbiome: a key regulator of stress and neuroinflammation. Neurobiol. Stress 4, 23–33 (2016).

    Article  Google Scholar 

  8. Bhattacharyya, A., Chattopadhyay, R., Mitra, S. & Crowe, S. E. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 94, 329–354 (2014).

    Article  Google Scholar 

  9. Vernia, P. et al. Fecal lactate and ulcerative colitis. Gastroenterology 95, 1564–1568 (1988).

    Article  Google Scholar 

  10. Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).

    Article  Google Scholar 

  11. Gershon, M. D. & Tack, J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397–414 (2007).

    Article  Google Scholar 

  12. Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P. & Lapaque, N. SCFA: mechanisms and functional importance in the gut. Proc. Nutr. Soc. 80, 37–49 (2021).

    Article  Google Scholar 

  13. Dalile, B., Van Oudenhove, L., Vervliet, B. & Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461–478 (2019).

    Article  Google Scholar 

  14. Fallingborg, J. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull. 46, 183–196 (1999).

    Google Scholar 

  15. Press et al. Gastrointestinal pH profiles in patients with inflammatory bowel disease. Aliment Pharmacol. Ther. 12, 673–678 (1998).

    Article  Google Scholar 

  16. Chang, E. B. & Leung, P. S. in The Gastrointestinal System (ed. Leung, P. S.) 107–134 (Springer, 2014).

  17. Maggs, D., MacDonald, I. & Nauck, M. A. Glucose homeostasis and the gastrointestinal tract: insights into the treatment of diabetes. Diabetes Obes. Metab. 10, 18–33 (2008).

    Article  Google Scholar 

  18. Fournel, A. et al. Glucosensing in the gastrointestinal tract: impact on glucose metabolism. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G645–G658 (2016).

    Article  Google Scholar 

  19. Antunes, L. C. M., Davies, J. E. & Finlay, B. B. Chemical signaling in the gastrointestinal tract. F1000 Biol. Rep. 3, 4 (2011).

    Article  Google Scholar 

  20. Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).

    Article  Google Scholar 

  21. Kalantar-Zadeh, K., Ha, N., Ou, J. Z. & Berean, K. J. Ingestible sensors. ACS Sens. 2, 468–483 (2017).

    Article  Google Scholar 

  22. Cao, Q. et al. Robotic wireless capsule endoscopy: recent advances and upcoming technologies. Nat. Commun. 15, 4597 (2024).

    Article  Google Scholar 

  23. Nan, K. et al. Mucosa-interfacing electronics. Nat. Rev. Mater. 7, 908–925 (2022).

    Article  Google Scholar 

  24. Min, J., Yang, Y., Wu, Z. & Gao, W. Robotics in the gut. Adv. Ther. 3, 1900125 (2020).

    Article  Google Scholar 

  25. Abdigazy, A. et al. End-to-end design of ingestible electronics. Nat. Electron. 7, 102–118 (2024).

    Article  Google Scholar 

  26. Traverso, G. et al. First-in-human trial of an ingestible vitals-monitoring pill. Device 1, 100125 (2023).

    Article  Google Scholar 

  27. You, S. S. et al. An ingestible device for gastric electrophysiology. Nat. Electron. 7, 497–508 (2024).

    Article  Google Scholar 

  28. Kalantar-Zadeh, K. et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat. Electron. 1, 79–87 (2018).

    Article  Google Scholar 

  29. Hou, B. et al. A swallowable X-ray dosimeter for the real-time monitoring of radiotherapy. Nat. Biomed. Eng. 7, 1242–1251 (2023).

    Article  Google Scholar 

  30. Inda-Webb, M. E. et al. Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ. Nature 620, 386–392 (2023).

    Article  Google Scholar 

  31. Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    Article  Google Scholar 

  32. De La Paz, E. et al. A self-powered ingestible wireless biosensing system for real-time in situ monitoring of gastrointestinal tract metabolites. Nat. Commun. 13, 7405 (2022).

    Article  Google Scholar 

  33. Xu, C. et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electron. 7, 168–179 (2024).

    Article  Google Scholar 

  34. Maines, A., Ashworth, D. & Vadgama, P. Diffusion restricting outer membranes for greatly extended linearity measurements with glucose oxidase enzyme electrodes. Anal. Chim. Acta 333, 223–231 (1996).

    Article  Google Scholar 

  35. Venton, B. J. & Cao, Q. Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Analyst 145, 1158–1168 (2020).

    Article  Google Scholar 

  36. Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).

    Article  Google Scholar 

  37. Li, S. et al. A wrinkled structure of gold film greatly improves the signaling of electrochemical aptamer-based biosensors. RSC Adv. 11, 671–677 (2020).

    Article  Google Scholar 

  38. Li, H., Dauphin-Ducharme, P., Ortega, G. & Plaxco, K. W. Calibration-free electrochemical biosensors supporting accurate molecular measurements directly in undiluted whole blood. J. Am. Chem. Soc. 139, 11207–11213 (2017).

    Article  Google Scholar 

  39. Jang, H.-S. et al. Nafion coated Au nanoparticle-graphene quantum dot nanocomposite modified working electrode for voltammetric determination of dopamine. Inorg. Chem. Commun. 105, 174–181 (2019).

    Article  Google Scholar 

  40. Ren, J., Shi, W., Li, K. & Ma, Z. Ultrasensitive platinum nanocubes enhanced amperometric glucose biosensor based on chitosan and Nafion film. Sens. Actuators B 163, 115–120 (2012).

    Article  Google Scholar 

  41. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  Google Scholar 

  42. Margolis, K. G. et al. Pharmacological reduction of mucosal but not neuronal serotonin opposes inflammation in mouse intestine. Gut 63, 928–937 (2014).

    Article  Google Scholar 

  43. Zelkas, L. et al. Serotonin-secreting enteroendocrine cells respond via diverse mechanisms to acute and chronic changes in glucose availability. Nutr. Metab. 12, 55 (2015).

    Article  Google Scholar 

  44. O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G. & Cryan, J. F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277, 32–48 (2015).

    Article  Google Scholar 

  45. Nath, S. et al. Topographical and biometrical anatomy of the digestive tract of white New Zealand rabbit (Oryctolagus cuniculus). J. Adv. Vet. Anim. Res. 3, 145–151 (2016).

    Article  Google Scholar 

  46. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  Google Scholar 

  47. Brodkorb, A. et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 14, 991–1014 (2019).

    Article  Google Scholar 

  48. Del-Rio-Ruiz, R. et al. Soft autonomous ingestible device for sampling the small-intestinal microbiome. Device 2, 100406 (2024).

    Article  Google Scholar 

  49. Levy, J. A., Straker, M. A., Stine, J. M., Beardslee, L. A. & Ghodssi, R. Magnetically triggered ingestible capsule for localized microneedle drug delivery. Device 2, 100438 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Science Foundation grant no. 2145802, National Institutes of Health grant nos. R01HL155815 and R21DK13266, American Cancer Society Research Scholar grant no. RSG-21-181-01-CTPS, Army Research Office grant no. W911NF-23-1-0041, US Army Medical Research Acquisition Activity grant no. HT9425-24-1-0249, National Research Foundation of Korea grant no. RS-2024-00411904 and Heritage Medical Research Institute (all to W.G.). We gratefully acknowledge critical support and infrastructure provided for this work by the Kavli Nanoscience Institute at Caltech. J.M. acknowledges fellowship support from the National Institutes of Health Training grant (no. T32EB023858). H.A. and H.-T.J. acknowledge the support from the KAIST-UC Berkeley-VNU Climate Change Research Center grant no. 2021K1A4A8A01079356. Lemberg (Austria) helped with porting code.

Author information

Authors and Affiliations

Authors

Contributions

W.G. and J.M. initiated the concept of and designed the studies. W.G. supervised the work. J.M. and H.A. led the experiments and collected the overall data. H.L., R.B. and G.K. contributed to sensor characterization and validation. X.M., S.-H.S., C.W., Y.X. and D.R.Y contributed to the animal studies. Z.L., T.K.H., A.E. and H.-T.J. contributed to the study design. All authors contributed to the data analysis and provided the feedback on the paper.

Corresponding authors

Correspondence to Hee-Tae Jung or Wei Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Rabia Yazicigil and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Figs. 1–41, Tables 1–5, Videos 1 and 2 and Refs. 1–12.

Reporting Summary

Supplementary Video 1

PillTrek performing multiparametric measurements while moving through a phantom intestine model.

Supplementary Video 2

PillTrek with protective cap repeatedly contacting rabbit intestinal tissue.

Source data

Source Data Figs. 2–5

Source data for sensor characterization studies in Fig. 2. Source data for electronic system characterization studies in Fig. 3. Source data for ex-vivo rat studies in Fig. 4. Source data for in vivo rabbit studies in Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, J., Ahn, H., Lukas, H. et al. Continuous biochemical profiling of the gastrointestinal tract using an integrated smart capsule. Nat Electron 8, 844–855 (2025). https://doi.org/10.1038/s41928-025-01407-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41928-025-01407-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing