Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modulating water hydrogen bonding within a non-aqueous environment controls its reactivity in electrochemical transformations

Abstract

Electrochemical carbon dioxide reduction (CO2R) can provide a sustainable route to produce fuels and chemicals; however, CO2R selectivity is frequently impaired by the competing hydrogen evolution reaction (HER), even for small concentrations of water. Here we tune water solvation and dynamics within a series of aprotic solvents featuring different functional groups and physicochemical properties to modulate HER activity and CO2R selectivity. We show that one can extend the HER onset potential by almost 1 V by confining water within a strong hydrogen bond network. We then achieve nearly 100% CO Faradaic efficiency at water concentrations as high as 3 M with a gold catalyst. Furthermore, under mildly acidic conditions, we sustain nearly 100% Faradaic efficiency towards CO with no carbonate losses over long-term electrolysis with an earth-abundant zinc catalyst. Our work provides insights to control water’s reactivity and reveals descriptors to guide electrolyte design for important electrochemical transformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Water speciation in organic media.
Fig. 2: Water clustering and dynamics.
Fig. 3: Influence of water solvation on HER.
Fig. 4: Influence of water addition on CO2R.
Fig. 5: Effect of water solvation on kinetics.
Fig. 6: Electrochemistry under acidic conditions.

Similar content being viewed by others

Data availability

Molecular dynamics inputs, initial and final configurations, and optimized structures for DFT calculations are provided in the Supplementary Information or are available online at https://github.com/AmanchukwuLab/water_activity_aprotic_CO2R_HER (ref. 69). The data supporting the findings of this study are available within the article and its Supplementary Information, or can be obtained from the corresponding author on reasonable request.

References

  1. McCrory, C. C. L., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Liang, Y. & Yao, Y. Designing modern aqueous batteries. Nat. Rev. Mater. 8, 109–122 (2022).

    Article  Google Scholar 

  3. Li, J., Li, X., Gunathunge, C. M. & Waegele, M. M. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proc. Natl Acad. Sci. USA 116, 9220–9229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  CAS  Google Scholar 

  5. Velasco-Velez, J. J. et al. The structure of interfacial water on gold electrodes studied by X-ray absorption spectroscopy. Science 346, 831–834 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Li, P. et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 5, 900–911 (2022).

    Article  CAS  Google Scholar 

  7. Wang, Y. H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Li, C. Y. et al. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18, 697–701 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

  10. Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

  11. Laage, D. & Stirnemann, G. Effect of ions on water dynamics in dilute and concentrated aqueous salt solutions. J. Phys. Chem. B 123, 3312–3324 (2019).

  12. Chao, D. et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xie, J., Liang, Z. & Lu, Y. C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, T. et al. Hydrogen-bond network manipulation of aqueous electrolytes with high-donor solvent additives for Al–air batteries. Energy Storage Mater. 45, 24–32 (2022).

    Article  Google Scholar 

  15. Wang, Y. et al. Enabling high-energy-density aqueous batteries with hydrogen bond-anchored electrolytes. Matter 5, 162–179 (2022).

    Article  CAS  Google Scholar 

  16. Zhou, L. et al. Suppressing hydrogen evolution in aqueous lithium-ion batteries with double-site hydrogen bonding. ACS Energy Lett. 29, 40–47 (2022).

    Google Scholar 

  17. Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain 4, 911–919 (2021).

    Article  Google Scholar 

  18. Verma, S., Kim, B., Jhong, H. R. M., Ma, S. & Kenis, P. J. A. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. Chem. Sus. Chem. 9, 1972–1979 (2016).

    Article  CAS  Google Scholar 

  19. Ikeda, S., Takagi, T. & Ito, K. Selective formation of formic acid, oxalic acid, and carbon monoxide by electrochemical reduction of carbon dioxide. Bull. Chem. Soc. Jpn. 60, 2517–2522 (1987).

    Article  CAS  Google Scholar 

  20. Tomita, Y., Teruya, S., Koga, O. & Hori, Y. Electrochemical reduction of carbon dioxide at a platinum electrode in acetonitrile–water mixtures. J. Electrochem. Soc. 147, 4164 (2000).

    Article  CAS  Google Scholar 

  21. Joshi, P. B., Karki, N. & Wilson, A. J. Electrocatalytic CO2 reduction in acetonitrile enhanced by the local environment and mass transport of H2O. ACS Energy Lett. 7, 602–609 (2022).

    Article  CAS  Google Scholar 

  22. Dubouis, N. et al. Tuning water reduction through controlled nanoconfinement within an organic liquid matrix. Nat. Catal. 3, 656–663 (2020).

    Article  CAS  Google Scholar 

  23. Figueiredo, M. C., Ledezma-Yanez, I. & Koper, M. T. M. In situ spectroscopic study of CO2 electroreduction at copper electrodes in acetonitrile. ACS Catal. 6, 2382–2392 (2016).

    Article  CAS  Google Scholar 

  24. Kash, B., Gomes, R. & Amanchukwu, C. Mitigating electrode inactivation during CO2 electrocatalysis in aprotic solvents with alkali cations. J. Phys. Chem. Lett. 14, 920–926 (2023).

  25. Gomes, R. J. et al. Probing electrolyte influence on CO2 reduction in aprotic solvents. J. Phys. Chem. C. 126, 13595–13606 (2022).

    Article  CAS  Google Scholar 

  26. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Wernet, P. et al. The structure of the first coordination shell in liquid water. Science 304, 995–999 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Bakker, H. J. & Skinner, J. L. Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110, 1498–1517 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Auer, B. M. & Skinner, J. L. Water: hydrogen bonding and vibrational spectroscopy, in the bulk liquid and at the liquid/vapor interface. Chem. Phys. Lett. 470, 13–20 (2009).

    Article  CAS  Google Scholar 

  31. Pribble, R. N. & Zwier, T. S. Size-specific infrared spectra of benzene–(H2O)n clusters (n = 1 through 7): evidence for noncyclic (H2O)n structures. Science 265, 75–79 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Yang, X. et al. Infrared spectroscopy of neutral water clusters at finite temperature: evidence for a noncyclic pentamer. Proc. Natl Acad. Sci. USA 117, 15423–15428 (2000).

  33. Xantheas, S. S. & Dunning, T. H. Ab initio studies of cyclic water clusters (H2O)n, n = 1–6. I. Optimal structures and vibrational spectra. J. Chem. Phys. 99, 8774–8792 (1993).

  34. Huisken, F., Kaloudis, M. & Kulcke, A. Infrared spectroscopy of small size‐selected water clusters. J. Chem. Phys. 104, 17–25 (1996).

  35. Scatena, L. F., Brown, M. G. & Richmond, G. L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Ohno, K., Okimura, M., Akai, N. & Katsumoto, Y. The effect of cooperative hydrogen bonding on the OH stretching-band shift for water clusters studied by matrix-isolation infrared spectroscopy and density functional theory. Phys. Chem. Chem. Phys. 7, 3005–3014 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Perera, P. N. et al. Observation of water dangling OH bonds around dissolved nonpolar groups. Proc. Natl Acad. Sci. USA 106, 12230–12234 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tomlinson-Phillips, J. et al. Structure and dynamics of water dangling OH bonds in hydrophobic hydration shells. Comparison of simulation and experiment. J. Phys. Chem. A 115, 6177–6183 (2011).

  39. Hsieh, C. S. et al. Ultrafast reorientation of dangling OH groups at the air-water interface using femtosecond vibrational spectroscopy. Phys. Rev. Lett. 107, 116102 (2011).

    Article  PubMed  Google Scholar 

  40. Dereka, B., Lewis, N. H. C., Keim, J. H., Snyder, S. A. & Tokmakoff, A. Characterization of acetonitrile isotopologues as vibrational probes of electrolytes. J. Phys. Chem. B 126, 278–291 (2022).

  41. Mikenda, W. Stretching frequency versus bond distance correlation of OD(H)Y (Y N, O, S, Se, Cl, Br, I) hydrogen bonds in solid hydrates. J. Mol. Struct. 147, 1–15 (1986).

    Article  CAS  Google Scholar 

  42. Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41, 48–76 (2002).

    Article  CAS  Google Scholar 

  43. Zarycz, M. N. C. & Fonseca Guerra, C. NMR 1H-shielding constants of hydrogen-bond donor reflect manifestation of the Pauli principle. J. Phys. Chem. Lett. 9, 3720–3724 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rohlfing, C. M. M., Allen, L. C. & Ditchfield, R. Proton chemical shift tensors in hydrogen‐bonded dimers of RCOOH and ROH. J. Chem. Phys. 79, 4958–4966 (1998).

    Article  Google Scholar 

  45. Fawcett, W. R. Acidity and basicity scales for polar solvents. J. Phys. Chem. 97, 9540–9546 (1993).

    Article  CAS  Google Scholar 

  46. Jeffrey, G. A. An Introduction to Hydrogen Bonding (Oxford Univ. Press, 1997).

  47. Venkatraman, R. K. & Baiz, C. R. Ultrafast dynamics at the lipid–water interface: DMSO modulates H-bond lifetimes. Langmuir 36, 6502–6511 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Nicodemus, R. A., Corcelli, S. A., Skinner, J. L. & Tokmakoff, A. Collective hydrogen bond reorganization in water studied with temperature-dependent ultrafast infrared spectroscopy. J. Phys. Chem. B 115, 5604–5616 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Sarode, H. N. et al. Insights into the transport of aqueous quaternary ammonium cations: a combined experimental and computational Study. J. Phys. Chem. B 118, 1363–1372 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Benck, J. D., Hellstern, T. R., Kibsgaard, J., Chakthranont, P. & Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4, 3957–3971 (2014).

    Article  CAS  Google Scholar 

  51. Murthy, A. P., Theerthagiri, J. & Madhavan, J. Insights on Tafel constant in the analysis of hydrogen evolution reaction. J. Phys. Chem. C. 122, 23943–23949 (2018).

    Article  CAS  Google Scholar 

  52. Rudnev, A. V. et al. The promoting effect of water on the electroreduction of CO2 in acetonitrile. Electrochim. Acta 189, 38–44 (2016).

    Article  CAS  Google Scholar 

  53. Anouti, M., Dougassa, Y. R., Tessier, C., El Ouatani, L. & Jacquemin, J. Low pressure carbon dioxide solubility in pure electrolyte solvents for lithium-ion batteries as a function of temperature. Measurement and prediction. J. Chem. Thermodyn. 50, 71–79 (2012).

    Article  CAS  Google Scholar 

  54. Welford, P. J. et al. The electro-reduction of carbon dioxide in dimethyl sulfoxide at gold microdisk electrodes: current|voltage waveshape analysis. J. Phys. Chem. B 105, 5253–5261 (2001).

    Article  CAS  Google Scholar 

  55. König, M., Vaes, J., Klemm, E. & Pant, D. Solvents and supporting electrolytes in the electrocatalytic reduction of CO2. iScience 19, 135–160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang, Q. et al. Micro-electrode with fast mass transport for enhancing selectivity of carbonaceous products in electrochemical CO2 reduction. Adv. Funct. Mater. 31, 2103966 (2021).

    Article  CAS  Google Scholar 

  57. Goyal, A., Marcandalli, G., Mints, V. A. & Koper, M. T. M. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. J. Am. Chem. Soc. 142, 4154–4161 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ooka, H., Figueiredo, M. C. & Koper, M. T. M. Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33, 9307–9313 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Krishtalik, L. I. Kinetic isotope effect in the hydrogen evolution reaction. Electrochim. Acta 46, 2949–2960 (2001).

    Article  CAS  Google Scholar 

  60. Fairley, N. et al. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl Sur Sci. Adv. 5, 100112 (2021).

    Article  Google Scholar 

  61. Won, D. H. et al. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angew. Chem. 128, 9443–9446 (2016).

    Article  Google Scholar 

  62. Rosen, J. et al. Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction. ACS Catal. 5, 4586–4591 (2015).

    Article  CAS  Google Scholar 

  63. Nguyen, D. L. T. et al. Selective CO2 reduction on zinc electrocatalyst: the effect of zinc oxidation state induced by pretreatment environment. ACS Sustain Chem. Eng. 5, 11377–11386 (2017).

    Article  CAS  Google Scholar 

  64. Izutsu, K. Electrochemistry in Nonaqueous Solutions (Wiley, 2002).

  65. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  66. Frisch, M. J. et al. Gaussian 16 (Gaussian, 2016).

  67. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys: Condens. Matter 21, 395502 (2009).

    PubMed  Google Scholar 

  68. Murbach, M. D., Gerwe, B., Dawson-Elli, N. & Tsui, L. impedance.py: a Python package for electrochemical impedance analysis. J. Open Source Softw. 5, 2349 (2020).

    Article  Google Scholar 

  69. AmanchukwuLab/water_activity_aprotic_CO2R_HER. GitHub https://github.com/AmanchukwuLab/water_activity_aprotic_CO2R_HER (2024).

Download references

Acknowledgements

This work was primarily supported by the U.S. Department of Energy Office of Science Basic Energy Sciences, Early Career Research Program (DE-SC0024103). C.V.A. was supported by the CIFAR Azrieli Global Scholars Program. R.J.G. was partially supported by the Roberto Rocca Scholars Program. R.K. was supported by the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship. H.F. was supported by the National Science Foundation Graduate Research Fellowship Program. I.R. was supported by the UChicago Quad Scholars Program. We thank N.H.C. Cohen and A. Tokmakoff for insightful discussions, and C. Vu for the scanning electron microscopy images. This work made use of the shared facilities (Raman) at the University of Chicago Materials Research Science and Engineering Center, supported by the National Science Foundation under award no. DMR-2011854. Fourier-transform infrared was performed at the Soft Matter Characterization Facility of the University of Chicago. Solution-state NMR measurements were performed at the UChicago Chemistry NMR Facility. Molecular dynamics and DFT calculations were performed with resources provided by the University of Chicago’s Research Computing Center.

Author information

Authors and Affiliations

Authors

Contributions

R.J.G. and C.V.A. conceptualized the paper. R.J.G. was responsible for the methodology and carried out the investigation. R.K. performed the MD and DFT calculations. H.F. performed experimental validation. I.R. performed NMR characterization. B.S. performed electrolyte stability analysis. R.J.G. and C.V.A. wrote the manuscript and all co-authors contributed to editing. C.V.A. supervised the work.

Corresponding author

Correspondence to Chibueze V. Amanchukwu.

Ethics declarations

Competing interests

There authors declare no comepting interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–7, Figs. 1–18, Tables 1–9 and refs. 1–33.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, R.J., Kumar, R., Fejzić, H. et al. Modulating water hydrogen bonding within a non-aqueous environment controls its reactivity in electrochemical transformations. Nat Catal 7, 689–701 (2024). https://doi.org/10.1038/s41929-024-01162-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-024-01162-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing